
hio
Release 0.3.4

Samuel M. Smith

Nov 27, 2022

CONTENTS:

1 Introduction to HIO 1
1.1 Structured Concurrency with Asynchronous IO . 1
1.2 Current Status . 2

2 src 3
2.1 hio package . 3

3 API Reference 5
3.1 hio . 5

4 Indices and tables 119

Python Module Index 121

Index 123

i

ii

CHAPTER

ONE

INTRODUCTION TO HIO

Weightless hierarchical asynchronous coroutines and I/O in Python.

Rich Flow Based Programming Hierarchical Structured Concurrency with Asynchronous IO

Hio builds on very early work on hierarchical structured concurrency with lifecycle contexts from [ioflo](https://ioflo.
com), [ioflo github](https://github.com/ioflo/ioflo), and [ioflo manuals](https://github.com/ioflo/ioflo_manuals).

This approach is compatible with flow based programming that sees all components as asynchronous and linked by
asynchronous buffers. FPB naturally lends itself to a much lighter weight async structure based on a hierarchical
scheduling approach.

This is even lighter weight and more performant than non-hierarchical structured concurrency approaches such as trio
or curio.

approach also is informed by and supports cooperative concurrent

discrete event simulation (DES). One important feature of concurrent discrete event simulation is reproducibility. This
requires tight control over scheduling order as in completely deterministic control of scheduling. In order to have
high fidelity reproduction or replay, all coroutines used in a discrete event simulation must be scheduled exactly in the
same relative order. An asyncio event loop does not have such tight control over scheduling order. But Hio does and
therefore can be used for discrete event simulations with high fidelity replay. One can always add noise and uncertainty
to a Hio replay as needed, but due to its underlying deterministic scheduling even the addition of noise can be done in
a predetermined reproducible way.

1.1 Structured Concurrency with Asynchronous IO

More recently the [curio](https://curio.readthedocs.io/en/latest/) and [trio](https://trio.readthedocs.io/en/stable/)
libraries have popularized coroutine based [structured concurrency](https://en.wikipedia.org/wiki/Structured_
concurrency).

See here for why it matters . . . [here](https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/)
and [here](https://vorpus.org/blog/companion-post-for-my-pycon-2018-talk-on-async-concurrency-using-trio/)

The main difference between hio and curio or trio is that hio uses extremely lightweight asynchronous hierarchical co-
routine scheduling. The scheduler only does one thing, that is, time slice sub coroutines or sub coroutine schedulers.

The coroutines are responsible for managing the asynchronous IO not the scheduler. This is compatible with a flow
based programming (FBP) approach where Async IO only services buffers. All interaction with other system com-
ponents happens through those buffers not some other mechanism. And certainly not a mechanism provided by the
async scheduler. This makes the architecture as flat as possible. All async IO is accessed via a buffer. Back pressure is
naturally exhibited via the buffer state. This approach merges the best of FBP and a bare-bones coroutine based async.

See API docs on readthedocs.org [Here](https://hio-py.readthedocs.io/en/latest/index.html)

1

https://ioflo.com
https://ioflo.com
https://github.com/ioflo/ioflo
https://github.com/ioflo/ioflo_manuals
https://curio.readthedocs.io/en/latest/
https://trio.readthedocs.io/en/stable/
https://en.wikipedia.org/wiki/Structured_concurrency
https://en.wikipedia.org/wiki/Structured_concurrency
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/companion-post-for-my-pycon-2018-talk-on-async-concurrency-using-trio/
https://hio-py.readthedocs.io/en/latest/index.html

hio, Release 0.3.4

1.2 Current Status

Version 0.4.1

Refined Doist and DoDoer makes their protocol interfaces nearly identical as
as is reasonably practical

Added HTTP support with hio compatible HTTP Client and HTTP WSGI Server Example test code shows HTTP
Server working with Falcon and Bottle ReST Micro

frameworks

Version 0.3.4
The async scheduler features should be pretty stable going forward. The tcp library should also be stable going
forward.

The TCP IO Client and Server classes are implemented. Includes support for TLS

TCP ServerDoer, EchoServerDoer, and ClientDoer classes are implemented as examples

2 Chapter 1. Introduction to HIO

CHAPTER

TWO

SRC

2.1 hio package

2.1.1 Subpackages

hio.base package

Submodules

hio.base.basing module

hio.base.doing module

hio.base.tyming module

Module contents

hio.core package

Subpackages

hio.core.serial package

Submodules

hio.core.serial.serialing module

Module contents

hio.core.tcp package

Submodules

hio.core.tcp.clienting module

3

hio, Release 0.3.4

hio.core.tcp.serving module

hio.core.tcp.tcping module

Module contents

hio.core.udp package

Submodules

hio.core.udp.udping module

Module contents

Submodules

hio.core.coring module

hio.core.wiring module

Module contents

hio.demo package

Module contents

hio.help package

Submodules

hio.help.helping module

hio.help.ogling module

hio.help.timing module

Module contents

2.1.2 Submodules

2.1.3 hio.cli module

2.1.4 hio.daemon module

2.1.5 hio.hioing module

2.1.6 Module contents

4 Chapter 2. src

CHAPTER

THREE

API REFERENCE

This page contains auto-generated API reference documentation1.

3.1 hio

hio package

3.1.1 Subpackages

hio.base

hio.base Package

Submodules

hio.base.basing

hio.base.basing Module

Module Contents

hio.base.basing.State

hio.base.doing

hio.core.doing Module
1 Created with sphinx-autoapi

5

https://github.com/readthedocs/sphinx-autoapi

hio, Release 0.3.4

Module Contents

Classes

Doist Doist is the root coroutine scheduler
Doer Doer base class for hierarchical structured async corou-

tine like generators.
ReDoer ReDoer is an example sub class whose .recur is a gener-

ator method not a
DoDoer DoDoer implements Doist like functionality to allow

nested scheduling of Doers.
ExDoer ExDoer is example Doer for testing and demonstration
TryDoer TryDoer supports testing with methods to record sends

and yields

Functions

doify(f, *[, name, tock]) Returns Doist compatible copy, g, of converted generator
function f.

doize(*[, tock]) Returns decorator that makes decorated generator func-
tion Doist compatible.

bareDo([tymth, tock]) Bare bones generator function template as example of
generator function

doifyExDo(tymth[, tock, states]) Example generator function for testing and demonstra-
tion.

doizeExDo(tymth[, tock, states]) Example decorated generator function for use with doize
decorator.

tryDo(states, tymth[, tock]) Generator function test example non-class based gener-
ator.

Attributes

Deed

hio.base.doing.Deed

class hio.base.doing.Doist(real=False, limit=None, doers=None, **kwa)
Bases: hio.base.tyming.Tymist

Doist is the root coroutine scheduler Provides relative cycle time in seconds with .tyme property to doers it runs
The relative cycle time is advanced in .tock size increments by the by the .tick method. The doist may treat .tyme
as artificial time or synchonize it to real time.

.enter method prepares deeds deque of triples (dog, retyme, doer) where
dog is a doer generator returned by calling doer generator instances, functions, or methods.

.recur method runs its deeds deque of triples (dog, retyme, doer) once per
invocation. This synchronizes their cycle time .tyme to the Doist’s tyme.

6 Chapter 3. API Reference

hio, Release 0.3.4

.do method repeatedly runs .recur until generators are complete
it may either repeat as fast as possbile or repeat at real time increments.

Inherited Class Attributes:
.Tock is default .tock

real

True means run in real time, Otherwise as fast as possible.

Type
boolean

limit

maximum run tyme limit then closes all doers

Type
float

done

True means completed due to limit or all deeds completed False is forced complete due to error

Type
boolean

doers

Doer class instances, generator methods or function callables with attributes tock, done, and opts dict().
Used throughout the execution lifecycle.

Type
list

deeds

Tuples of form (dog, retyme, doer). Where: dog is generator created by doer retyme is tyme (real or
simulated) in seconds when dog should run next doer is associated doer in .doers list used to assign its
.done state

given completion state of its dog

Used throughout the execution lifecycle. The normal case is use the default empty initialization performed
here and update in .enter().

Type
deque

timer

for real time intervals

Type
MonoTimer

Inherited Properties:
tyme: is float relative cycle time, .tyme is artificial time : is float tyme increment of .tick()

Properties:

Inherited Methods:
.tick increments .tyme by one .tock or provided tock

.enter prepare deeds, deque of triples (dog, retyme, doer)

3.1. hio 7

hio, Release 0.3.4

.recur run through all deeds once

.do repeadedly call .recur until all dogs in deeds are complete or

times out do to reaching time limit

do(doers=None, limit=None, tyme=None)
Readies deeds deque from .doers or doers if any and then iteratively runs .recur over deeds deque until
completion of all deeds. Each entry in deeds is a triple (dog, retyme, doer) where:

dog is generator retyme is tyme (real or simulated) in seconds when dog should run next doer is
from .doers list used to assign its .done state given associated completion state of its dog

If interrupted by exception call .close on each dog to force exit context.

Keyboard interrupt (cntl-c) forces exit.

Once finally clause closes a generator it must be reinited before it can be run again

Parameters

• doers (iterable) – generator method or function callables with attributes tock, done,
and opts dict(). This may be used to update the .doers attribute which is used throughout
the execution lifecycle. If not provided uses .doers. Parameterization here of doers enables
some special cases. The normal case is to initialize in .__init__ or here.

• limit (float) – is real time limit on execution. Forces close of all dogs.

• tyme (float) – is optional starting tyme. Resets .tyme to tyme whe provided. If not
provided uses current .tyme

Returns
None

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

enter(doers=None)
Enter context Returns (deque): deeds deque of triples (dog, retyme, doer) where:

dog is generator retyme is tyme (real or simulated) in seconds when dog should run next doer is
from .doers list used to assign its .done state given

completion state of its dog

Calls each generator callable (instance or function or method) in .doers to create each generator dog. Injects
own tymth function closure, and

generator function’s own tock, and opts.

Runs enter context of each dog by calling next(dog)

Parameters

• attributes (doers is list of generator method or function callables
with) – .tock is tyme increment in seconds .done is Boolean completion state .opts is
dict() of optional parameters If not provided uses .doers. The normal case is to initialize
in .__init__. or .do().

• triples (deeds is deque of deed) –

Returns
A deed is tuple of form (dog, retyme, doer). If not provided uses .deeds.

Return type
deeds deque()

8 Chapter 3. API Reference

https://stackoverflow.com/questions/40528867/setting-attributes-on-func

hio, Release 0.3.4

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

recur(deeds=None)
Recur once through deeds deque of tuples (triples) of form (dog, retyme, doer) and update in place

Each deed is deque of tuples of form (dog, retyme, doer) where:
dog is generator retyme is tyme (real or simulated) in seconds when dog should run next doer is from
.doers list used to assign its .done state given associated completion state of its dog

Each cycle checks all generators in deeds deque and runs if retyme past. At end of cycle advances .tyme by
one .tock by calling .tick()

Parameters
deeds (deque) – tuples of form (dog, retyme, doer). Parameterization here of deeds enables
some special cases.

The Parameterization here of deeds enables some special cases such as manual testing or iteraton. The
normal case is to initialize .doers in .__init__. or .do() and to initialize .deeds in .__init__. and then update
in .enter()

exit(deeds=None)
Force exit each still opened deed calling .close on the dog generator which throws a GeneratorExit to the
generator. This executes the close context (GeneratorExit) which then excecutes the exit context in the
finally caluse. Each dogs exit is responsible for releasing resources Previously aborted or closed dogs have
already exited Close any running dogs in reverse order so that enters and exits are nested pairs so that the
corresponding exits appear in reverse order to their entes. This preserves nested resource dependencies.
For example:

enter A,

enter B,
enter C, exit C,

exit B,

exit A

Parameters
deeds (deque) – tuples of form (dog, retyme, doer). If not provided uses .deeds. Parameter-
ization here of deeds enables some special cases.

extend(doers)
Extend .doers list with doers. Ready deeds from doers and extend .doers and .deeds. Edit deeds in place so
not replace deque.

Parameters
extension. (doers is list of doers to add as) –

remove(doers)
Remove doers from .doers list and any associated deeds from .deeds deque. Force close removed deeds.

Parameters
remove. (doers is list of doers to) –

hio.base.doing.doify(f, *, name=None, tock=0.0, **opts)
Returns Doist compatible copy, g, of converted generator function f. Each invoction of doify(f) returns a unique
copy of doified function f. Imbues copy, g, of converted generator function, f, with attributes used by Doist.enter()
or DoDoer.enter(). Allows multiple instances of copy, g, of generator function, f, each with unique attributes.

3.1. hio 9

https://stackoverflow.com/questions/40528867/setting-attributes-on-func

hio, Release 0.3.4

Usage: def f():

pass

c = doify(f, name=’c’)

Parameters

• function (f is generator) –

• copy (name is new function name for returned doified copy g. Default
is to) – f.__name__

• g (tock is default tock attribute of doified copy) –

• attribute (opts is dictionary of remaining parameters that becomes
.opts) – of doified copy g

Based on: https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance

hio.base.doing.doize(*, tock=0.0, **opts)
Returns decorator that makes decorated generator function Doist compatible. Imbues decorated generator func-
tion with attributes used by Doist.enter() or DoDoer.enter(). Only one instance of decorated function with shared
attributes is allowed.

Usage: @doize def f():

pass

Parameters

• f (tock is default tock attribute of doized) –

• attribute (opts is dictionary of remaining parameters that becomes
.opts) – of doized f

class hio.base.doing.Doer(*, tymth=None, tock=0.0, **opts)
Bases: hio.base.tyming.Tymee

Doer base class for hierarchical structured async coroutine like generators. Doer.__call__ on instance returns
generator. Interface for Doist etc is generator function like object. Doer is generator method instance creator and
has extra methods and attributes that a plain generator function does not

The .do method executes other methods each corresponding to one of the six econtexts:

enter, recur, clean, exit, (unforced) close, abort (forced)

Actual context order may be one of:
enter, recur, clean, exit enter, recur, close, exit enter, recur, abort, exit enter, abort, exit

.done is Boolean completion state

True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.opts is dict of injected options into its .do generator by scheduler

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

10 Chapter 3. API Reference

https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance

hio, Release 0.3.4

Properties:

.tock is float, desired time in seconds between runs or until next run,
non negative, zero means run asap

Inherited Methods:
.wind injects ._tymth dependency from associated Tymist to get its .tyme

.__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator

.enter is enter context action method

.recur is recur context action method or generator method

.clean is clean context action method

.exit is exit context method

.close is close context method

.abort is abort context method

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._tock is hidden attribute for .tock property

property tock

tock property getter, get ._tock .tock is float desired .tyme increment in seconds

__call__(**kwa)
Returns generator Does not advance to first yield. The advance to first yield effectively invodes the enter
or open context on the generator. To enter either call .next or .send(None) on generator

do(tymth, *, tock=0.0, **opts)
Generator method to run this doer. Calling this method returns generator. Interface matches generator
function for compatibility. To customize create subclasses and override the lifecycle methods:

.enter, .recur, .exit, .close, .abort

Parameters

• of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme.

• value (tock is injected initial tock) –

• parameters (args is dict of injected optional additional) –

enter()

Do ‘enter’ context actions. Override in subclass. Not a generator method. Set up resources. Comparable
to context manager enter.

3.1. hio 11

hio, Release 0.3.4

recur(tyme)
Do ‘recur’ context actions. Override in subclass. Regular method that perform repetitive actions once per
invocation. Assumes resource setup in .enter() and resource takedown in .exit() (see ReDoer below for
example of .recur that is a generator method)

Returns completion state of recurrence actions.
True means done False means continue

Parameters
here. (Doist feeds its .tyme through .send to .do yield which passes
it) –

.recur maybe implemented by a subclass either as a non-generator method or a generator method. This stub
here is as a non-generator method. The base class .do detects which type:

If non-generator .do method runs .recur method once per iteration
until .recur returns (True)

If generator .do method runs .recur with (yield from) until .recur
returns (see ReDoer for example of generator .recur)

clean()

Do ‘clean’ context actions. Override in subclass. Not a generator method. Clean up resources that are
unique to a clean exit. Called by else after normal return.

exit()

Do ‘exit’ context actions. Override in subclass. Not a generator method. Clean up resources. Comparable
to context manager exit. Called by finally after normal return, close, or abort. After .exit() do returns
resulting in StopIteration.

close()

Do ‘close’ context actions. Override in subclass. Not a generator method. Forced close by thrown generator
.close() method causing GeneratorExit. .exit() is finally called after .close().

abort(ex)
Do ‘abort’ context actions. Override in subclass. Not a generator method. :param ex is Exception instance
that caused abort.:

Unexpected exception that results in generator exiting but not GeneratorExit. .exit() is finally called after
.abort().

class hio.base.doing.ReDoer(*, tymth=None, tock=0.0, **opts)
Bases: Doer

ReDoer is an example sub class whose .recur is a generator method not a plain method. Its .do method detects
that its .recur is a generator method and executes it using yield from instead of just calling the method.

Inherited Attributes:

.done is Boolean completion state:
True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.opts is dict of injected options into its .do generator by scheduler

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

12 Chapter 3. API Reference

hio, Release 0.3.4

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

.tock is float, desired time in seconds between runs or until next run,
non negative, zero means run asap

Inherited Methods:
.wind injects ._tymth dependency from associated Tymist to get its .tyme .__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator .enter is enter context action method .recur is recur context
action method or generator method .exit is exit context method .close is close context method .abort is abort
context method

Overidden Methods:
.recur

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._tock is hidden attribute for .tock property

recur()

Do ‘recur’ context actions as a generator method. Override in subclass. Assumes resource setup in .enter()
and resource takedown in .exit() (see Doer for example of .recur that is a regular method)

yield the current .tock accepts the current tyme returns the .done

Parameters

• yield (tyme is initial output of send fed to do) –

• .tyme (Doist feeds its) –

Returns completion state of recurrence actions.
True means done False means continue

Maybe a non-generator method or a generator method. For base class do:

non-generator recur method runs until returns (True) generator recur method runs until returns
(yield from)

class hio.base.doing.DoDoer(doers=None, always=False, **kwa)
Bases: Doer

DoDoer implements Doist like functionality to allow nested scheduling of Doers. Each DoDoer runs a list of
doers like a Doist but using the tyme from its

injected tymth for the associated tymist as injected by its ultimate root parent Doist and any intervening
parent DoDoer(s).

Scheduling hierarchy: Doist->DoDoer. . . ->DoDoer->Doers

Inherited Attributes:

.done is Boolean completion state:
True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.opts is dict of injected options for its generator .do

3.1. hio 13

hio, Release 0.3.4

Attributes:

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

.tock is float, desired time in seconds between runs or until next run,
non negative, zero means run asap

Properties:

doers (list): Doer or Doist compatible generator instances,
functions, or methods.

deeds (deque): tuples of form (dog, retyme, doer) where:
dog is generator created by doer. retyme is tyme in seconds when next should run may be real or
simulated. doer is associated doer in .doers list. Used throughout the execution lifecycle. The normal
case is use the default empty initialization performed here and update in .enter().

always (bool): True means keep running even when all dogs in deeds
are complete. Enables dynamically managing extending or removing doers and associated deeds while
running.

Inherited Methods:
.wind injects ._tymth dependency from associated Tymist to get its .tyme .__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator .enter is enter context action method .recur is recur context
action method or generator method .clean is clean context action method .exit is exit context method .close
is close context method .abort is abort context method

Overidden Methods:
.do .enter .recur .exit

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._tock is hidden attribute for .tock property ._always is hidden attribute for .always property ._doers is
hidden attribute for .doers property ._deeds is hidden attribute for .deeds property

property doers

doers property getter, get ._doers .doers is list of doist compatible generator instances, functions, or

methods

property deeds

deeds property getter, get ._deeds .deeds is deque of triples, each of form (dog, retyme, doer)

property always

always property getter, get ._always .always is Boolean, True means keep running even when all dogs in
deeds

are complete. Enables dynamically managing extending or removing doers and associated deeds
while running.

14 Chapter 3. API Reference

hio, Release 0.3.4

do(tymth, tock=0.0, doers=None, always=None, **opts)
Generator method to run this doer. Equivalent of doist.do Calling this method returns generator Interface
matched generator function for compatibility

Parameters

• of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme.

• value (tock is injected initial tock) –

• attributes (doers is list of generator method or function callables
with) – tock, done, and opts dict(). This may be used to update the .doers attribute which
is used throughout the execution lifecycle. If not provided uses .doers. Parameterization
here of doers enables some special cases. The normal case is to initialize in .__init__.

• deeds (always is Boolean. True means keep running even when all dogs
in) – are complete. Enables dynamically managing extending or removing doers and
associated deeds while running. When not provided use .always.

• parameters (opts is dict of injected optional additional) –

enter(doers=None)
Do ‘enter’ context actions. Equivalent of Doist.enter()

Returns deeds deque of triples (dog, retyme, doer) where:
dog is generator created by doer retyme is tyme in seconds when next should run may be real or
simulated doer is doer for dog from doers list

Calls each generator callable (function or method) in .doers to create each generator dog.

Runs enter context of each dog by calling next(dog)

Parameters
doers (list) – Doer Instance, generator method or function callables with attributes tock,
done, and opts dict(). If not provided uses .doers. Parameterization here of doers enables
some special cases. The normal case is to initialize in .__init__.

Returns
A deed is tuple of form (dog, retyme, doer). If not provided uses .deeds.

Return type
deeds deque()

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

recur(tyme, deeds=None)
Do ‘recur’ context actions. Equivalent of Doist.recur

Parameters
tyme (float) –

is output of send fed to do yield, The root scheduler
Doist feeds its .tyme which propagates down the chain of DoDoers Because tymist is in-
jected by doist or dodoer, self.tyme is same as tyme. So may use either which is more
convenient.

deeds (deque): tuples of form (dog, retyme, doer).
If not provided uses .deeds. Parameterization here of deeds enables some special cases.

3.1. hio 15

https://stackoverflow.com/questions/40528867/setting-attributes-on-func

hio, Release 0.3.4

Returns completion state of recurrence actions.
True means done False means continue

Cycle once through deeds deque and update in place

Each cycle checks all generators dogs in deeds deque and runs if retyme past.

exit(deeds=None)
Do ‘exit’ context actions.

Parameters
deeds (deque) – of deed tuples of form (dog, retyme, doer) If not provided uses .deeds.
Parameterization here of deeds enables some special cases.

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

extend(doers)
Extend .doers list with doers. Ready deeds from doers and extend .doers and .deeds. Edit deeds in place so
not replace deque.

Parameters
extension. (doers is list of doers to add as) –

remove(doers)
Remove doers from .doers list and any associated deeds from .deeds deque. Force close removed deeds.

Parameters
remove. (doers is list of doers to) –

hio.base.doing.bareDo(tymth=None, tock=0.0, **opts)
Bare bones generator function template as example of generator function suitable for use with either doify wrap-
per or doize decorator. Make copy and rename for given application. Calling copied renamed function returns
basic generator. Wrapping copied renamed function with doify returns yet unique wrapped copy with unique val-
ues of injected attributes and parameters and further renamed by wrapper. Decorating copied renamed function
with doize returns singleton with injected parameter values.

Injected Attributes:
g.tock = tock # default tock attributes g.done = None # default done state g.opts

Parameters

• of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme.

• value (tock is injected initial tock) –

• parameters (opts is dict of injected optional additional) –

The function comments show where the 6 equivalent contexts are performed enter, recur, clean, exit, (unforced)
close, abort (forced) So context order may be: enter, recur, clean, exit enter, recur, close, exit enter, recur, abort,
exit enter, abort, exit

class hio.base.doing.ExDoer(**kwa)
Bases: Doer

ExDoer is example Doer for testing and demonstration Supports introspection with methods to record sends and
yields

See Doer for inherited attributes, properties, and methods.

16 Chapter 3. API Reference

https://stackoverflow.com/questions/40528867/setting-attributes-on-func

hio, Release 0.3.4

.states is list of State namedtuples

Type
tyme, context, feed, count

.count is iteration count

enter()

recur(tyme)

exit()

close()

abort(ex)

hio.base.doing.doifyExDo(tymth, tock=0.0, states=None, **opts)
Example generator function for testing and demonstration. Example non-class based generator for use with doify
wrapper. Calling this function returns generator. Wrapping this function with doify returns copy with unique
attributes

Parameters

• of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme.

• value (tock is injected initial tock) –

• namedtuples (states is list of State) –

• parameters (opts is dict of injected optional additional) –

hio.base.doing.doizeExDo(tymth, tock=0.0, states=None, **opts)
Example decorated generator function for use with doize decorator. Example non-class based generator Calling
this function returns generator

Parameters
of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme. tock is injected initial tock
value states is list of State namedtuples (tyme, context, feed, count) opts is dict of injected
optional additional parameters

class hio.base.doing.TryDoer(stop=3, **kwa)
Bases: Doer

TryDoer supports testing with methods to record sends and yields

Inherited Attributes:

.done is Boolean completion state:
True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.states is list of State namedtuples

Type
tyme, context, feed, count

.count is context count

3.1. hio 17

hio, Release 0.3.4

.stop is stop count where doer completes

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

.tock is float, desired time in seconds between runs or until next run,
non negative, zero means run asap

Properties:

.wind injects ._tymth dependency from associated Tymist to get its .tyme

.__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator

.enter is enter context action method

.recur is recur context action method or generator method

.exit is exit context method

.close is close context method

.abort is abort context method

enter()

recur(tyme)

exit()

close()

abort(ex)

hio.base.doing.tryDo(states, tymth, tock=0.0, **opts)
Generator function test example non-class based generator. Calling this function returns generator

hio.base.filing

hio.base.filing module

18 Chapter 3. API Reference

hio, Release 0.3.4

Module Contents

Classes

Filer Filer instances manage file directories and files to hold
keri installation

FilerDoer Basic Filer Doer

Functions

openFiler([cls, name, temp, reopen, clear]) Context manager wrapper Filer instances for managing
a filesystem directory

Attributes

logger

hio.base.filing.logger

hio.base.filing.openFiler(cls=None, name='test', temp=True, reopen=True, clear=False, **kwa)
Context manager wrapper Filer instances for managing a filesystem directory and or files in a directory.

Defaults to using temporary directory path. Context ‘with’ statements call .close on exit of ‘with’ block

Parameters

• instance (cls is Class instance of subclass) –

• oglers (name is str name of ogler instance for filename so can have
multiple) – at different paths thar each use different log file directories

• Boolean (temp is) – Otherwise open in persistent directory, do not clear on close

• directory (True means open in temporary) – Otherwise open in persistent directory,
do not clear on close

• close (clear on) – Otherwise open in persistent directory, do not clear on close

Usage:

with openFiler(name=”bob”) as filer:

with openFiler(name=”eve”, cls=FilerSubClass) as filer:

class hio.base.filing.Filer(name='main', base='', temp=False, headDirPath=None, perm=None,
reopen=True, clear=False, reuse=False, clean=False, filed=False, mode=None,
fext=None, **kwa)

Filer instances manage file directories and files to hold keri installation specific resources like databases and
configuration files.

3.1. hio 19

hio, Release 0.3.4

name

unique path component used in directory or file path name

Type
str

base

another unique path component inserted before name

Type
str

temp

True means use /tmp directory

Type
bool

headDirPath is head directory path

path is full directory path

perm is numeric os permissions for directory and/or file

Type
s

filed

True means .path ends in file. False means .path ends in directory

Type
bool

mode

file open mode if filed

Type
str

fext

file extension if filed

Type
str

file

Type
File

opened is Boolean, True means directory created and if file then file

is opened. False otherwise

File/Directory Creation Mode Notes:
.Perm provides default restricted access permissions to directory and/or files stat.S_ISVTX | stat.S_IRUSR
| stat.S_IWUSR | stat.S_IXUSR 0o1700==960

stat.S_ISVTX is Sticky bit. When this bit is set on a directory it means
that a file in that directory can be renamed or deleted only by the owner of the file, by the owner of the
directory, or by a privileged process. When this bit is set on a file it means nothing

20 Chapter 3. API Reference

hio, Release 0.3.4

stat.S_IRUSR Owner has read permission. stat.S_IWUSR Owner has write permission. stat.S_IXUSR
Owner has execute permission.

HeadDirPath = /usr/local/var

TailDirPath = hio

CleanTailDirPath = hio/clean

AltHeadDirPath = ~

AltTailDirPath = .hio

AltCleanTailDirPath = .hio/clean

TempHeadDir = /tmp

TempPrefix = hio_

TempSuffix = _test

Perm

Mode = r+

Fext = text

reopen(temp=None, headDirPath=None, perm=None, clear=False, reuse=False, clean=False, mode=None,
fext=None, **kwa)

Open if closed or close and reopen if opened or create and open if not

Parameters

• temp (bool) – assign to .temp True means open in temporary directory, clear on close
False means open persistent directory, do not clear on close

• headDirPath (str) – optional head directory pathname for main database Default .Head-
Dirpath

• perm (int) – optional numeric os dir permissions for database directory and database files.
Default .Perm

• clear (bool) – True means remove directory upon close False means do not remove di-
rectory upon close

• reuse (bool) – True means reuse self.path if already exists False means do not reuse but
remake self.path

• clean (bool) – True means path uses clean tail variant False means path uses normal tail
variant

• mode (str) – file open mode when .filed

• fext (str) – File extension when .filed

remake(*, name='', base='', temp=None, headDirPath=None, perm=None, clean=False, filed=False,
mode=None, fext=None, **kwa)

Make and return (path. file) by opening or creating and opening if not preexistent, directory or file at path

Parameters

• name (str) – unique name alias portion of path

3.1. hio 21

hio, Release 0.3.4

• base (str) – optional base inserted before name in path

• temp (bool) – optional None means ignore, True means open temporary directory, may
clear on close False menans open persistent directory, may not clear on close

• headDirPath (str) – optional head directory pathname of main database

• perm (int) – directory or file permissions such as stat.S_IRUSR Owner has read per-
mission. stat.S_IWUSR Owner has write permission. stat.S_IXUSR Owner has execute
permission.

• clean (bool) – True means make path for cleaned version and remove old directory or file
at clean path if any. False means make path normally (not clean)

• filed (bool) – True means .path is file path not directory path False means .path is direc-
tiory path not file path

• mode (str) – file open mode when .filed such as “w+”

• fext (str) – File extension when .filed

close(clear=False)
Close .file if any and if clear rm directory or file at .path

Parameters
clear (bool) – True means remove dir or file at .path

_clearPath()

Remove directory/file at end of .path

class hio.base.filing.FilerDoer(filer, **kwa)
Bases: hio.base.doing.Doer

Basic Filer Doer

done

completion state: True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

Type
bool

filer

instance

Type
Filer

Properties:

tyme (float): relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

tymth (func): closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

tock (float)): desired time in seconds between runs or until next run,
non negative, zero means run asap

enter()

exit()

22 Chapter 3. API Reference

hio, Release 0.3.4

hio.base.tyming

hio.core.tyming Module

Module Contents

Classes

Tymist Tymist keeps artificial or simulated or cycle time, called
tyme.

Tymee Tymee has .tyme property that returns the artificial or
simulated or cycle time

Tymer Tymer class to measure cycle time given by .tyme prop-
erty of Tymist instance.

class hio.base.tyming.Tymist(tyme=0.0, tock=None, **kwa)
Bases: hio.hioing.Mixin

Tymist keeps artificial or simulated or cycle time, called tyme. Provides relative cycle time, tyme, in seconds
with .tyme property in incremets of .tock seconds. .tyme is advanced one .tock increment with .tick method.
.tyme may be synchronized with real time by a .tyme manager

Class Attributes:
.Tock is default .tock

Attributes:

Properties:
.tyme is float relative cycle time, .tyme is artificial time .tock is float tyme increment of .tick()

.tick increments .tyme by one .tock or provided tock

property tyme

tyme property getter, get ._tyme .tyme is float cycle time in seconds

property tock

tock property getter, get ._tock .tock is float cycle time .tyme increment in seconds

Tock = 0.03125

tick(tock=None)
Advance cycle time .tyme by tock seconds when provided othewise by .tock and return new .tyme :param
tock is float of amount of time in seconds to change .tyme:

tymen()

Returns function wrapper closure tymth, when called tymth() returns .tyme. This enables read only injec-
tion of .tyme into any object via tymth() that wants to be on or access this Tymist’s tyme base.

class hio.base.tyming.Tymee(tymth=None, **kwa)
Bases: hio.hioing.Mixin

Tymee has .tyme property that returns the artificial or simulated or cycle time from its referenced Tymist instance
._tymist.

Attributes:

3.1. hio 23

hio, Release 0.3.4

Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

.wind injects ._tymth dependency from associated Tymist to get its .tyme

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

property tyme

tyme property getter, get ._tyme .tyme is float cycle time in seconds

property tymth

tymth property getter, get ._tymth returns own copy of tymist.tynth function wrapper closure for subsequent
injection into related objects that want to be on same tymist tyme base.

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Override in subclasses to update any
dependencies on a change in tymist.tymth base

class hio.base.tyming.Tymer(duration=None, start=None, **kwa)
Bases: Tymee

Tymer class to measure cycle time given by .tyme property of Tymist instance. tyme is relative cycle time either
artificial or real

Inherited Attributes

Attributes:

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

Properties:
.duration = tyme duration of tymer in seconds from ._start to ._stop .elaspsed = tyme elasped in seconds
since ._start .remaining = tyme remaining in seconds until ._stop .expired = True if expired, False otherwise,
i.e. .tyme >= ._stop

Inherited Methods:
.wind is injects ._tymth dependency

.start() = start tymer at current .tyme

.restart() = restart tymer at last ._stop so no time lost

Hidden:

24 Chapter 3. API Reference

hio, Release 0.3.4

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._start is start tyme in seconds ._stop is stop tyme in seconds

property duration

duration property getter, .duration = ._stop - ._start .duration is float duration tyme

property elapsed

elapsed tyme property getter, Returns elapsed tyme in seconds (fractional) since ._start.

property remaining

remaining tyme property getter, Returns remaining tyme in seconds (fractional) before ._stop.

property expired

Returns True if tymer has expired, False otherwise. .tyme >= ._stop,

Duration = 0.0

wind(tymth)
Inject new ._tymist and any other bundled tymee references Update any dependencies on a change in
._tymist:

starts over itself at new ._tymists time

start(duration=None, start=None)

Starts Tymer of duration secs at start time start secs.
If duration not provided then uses current duration If start not provided then starts at current .tyme

restart(duration=None)
Lossless restart of Tymer at .tyme = ._stop for duration if provided, current duration otherwise No time
lost. Useful to extend Tymer so no time lost

Package Contents

Classes

Tymist Tymist keeps artificial or simulated or cycle time, called
tyme.

Tymee Tymee has .tyme property that returns the artificial or
simulated or cycle time

Tymer Tymer class to measure cycle time given by .tyme prop-
erty of Tymist instance.

Doist Doist is the root coroutine scheduler
Doer Doer base class for hierarchical structured async corou-

tine like generators.
DoDoer DoDoer implements Doist like functionality to allow

nested scheduling of Doers.
Filer Filer instances manage file directories and files to hold

keri installation
FilerDoer Basic Filer Doer

3.1. hio 25

hio, Release 0.3.4

Functions

doize(*[, tock]) Returns decorator that makes decorated generator func-
tion Doist compatible.

doify(f, *[, name, tock]) Returns Doist compatible copy, g, of converted generator
function f.

openFiler([cls, name, temp, reopen, clear]) Context manager wrapper Filer instances for managing
a filesystem directory

class hio.base.Tymist(tyme=0.0, tock=None, **kwa)
Bases: hio.hioing.Mixin

Tymist keeps artificial or simulated or cycle time, called tyme. Provides relative cycle time, tyme, in seconds
with .tyme property in incremets of .tock seconds. .tyme is advanced one .tock increment with .tick method.
.tyme may be synchronized with real time by a .tyme manager

Class Attributes:
.Tock is default .tock

Attributes:

Properties:
.tyme is float relative cycle time, .tyme is artificial time .tock is float tyme increment of .tick()

.tick increments .tyme by one .tock or provided tock

property tyme

tyme property getter, get ._tyme .tyme is float cycle time in seconds

property tock

tock property getter, get ._tock .tock is float cycle time .tyme increment in seconds

Tock = 0.03125

tick(tock=None)
Advance cycle time .tyme by tock seconds when provided othewise by .tock and return new .tyme :param
tock is float of amount of time in seconds to change .tyme:

tymen()

Returns function wrapper closure tymth, when called tymth() returns .tyme. This enables read only injec-
tion of .tyme into any object via tymth() that wants to be on or access this Tymist’s tyme base.

class hio.base.Tymee(tymth=None, **kwa)
Bases: hio.hioing.Mixin

Tymee has .tyme property that returns the artificial or simulated or cycle time from its referenced Tymist instance
._tymist.

Attributes:

Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

26 Chapter 3. API Reference

hio, Release 0.3.4

.wind injects ._tymth dependency from associated Tymist to get its .tyme

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

property tyme

tyme property getter, get ._tyme .tyme is float cycle time in seconds

property tymth

tymth property getter, get ._tymth returns own copy of tymist.tynth function wrapper closure for subsequent
injection into related objects that want to be on same tymist tyme base.

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Override in subclasses to update any
dependencies on a change in tymist.tymth base

class hio.base.Tymer(duration=None, start=None, **kwa)
Bases: Tymee

Tymer class to measure cycle time given by .tyme property of Tymist instance. tyme is relative cycle time either
artificial or real

Inherited Attributes

Attributes:

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

Properties:
.duration = tyme duration of tymer in seconds from ._start to ._stop .elaspsed = tyme elasped in seconds
since ._start .remaining = tyme remaining in seconds until ._stop .expired = True if expired, False otherwise,
i.e. .tyme >= ._stop

Inherited Methods:
.wind is injects ._tymth dependency

.start() = start tymer at current .tyme

.restart() = restart tymer at last ._stop so no time lost

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._start is start tyme in seconds ._stop is stop tyme in seconds

property duration

duration property getter, .duration = ._stop - ._start .duration is float duration tyme

3.1. hio 27

hio, Release 0.3.4

property elapsed

elapsed tyme property getter, Returns elapsed tyme in seconds (fractional) since ._start.

property remaining

remaining tyme property getter, Returns remaining tyme in seconds (fractional) before ._stop.

property expired

Returns True if tymer has expired, False otherwise. .tyme >= ._stop,

Duration = 0.0

wind(tymth)
Inject new ._tymist and any other bundled tymee references Update any dependencies on a change in
._tymist:

starts over itself at new ._tymists time

start(duration=None, start=None)

Starts Tymer of duration secs at start time start secs.
If duration not provided then uses current duration If start not provided then starts at current .tyme

restart(duration=None)
Lossless restart of Tymer at .tyme = ._stop for duration if provided, current duration otherwise No time
lost. Useful to extend Tymer so no time lost

class hio.base.Doist(real=False, limit=None, doers=None, **kwa)
Bases: hio.base.tyming.Tymist

Doist is the root coroutine scheduler Provides relative cycle time in seconds with .tyme property to doers it runs
The relative cycle time is advanced in .tock size increments by the by the .tick method. The doist may treat .tyme
as artificial time or synchonize it to real time.

.enter method prepares deeds deque of triples (dog, retyme, doer) where
dog is a doer generator returned by calling doer generator instances, functions, or methods.

.recur method runs its deeds deque of triples (dog, retyme, doer) once per
invocation. This synchronizes their cycle time .tyme to the Doist’s tyme.

.do method repeatedly runs .recur until generators are complete
it may either repeat as fast as possbile or repeat at real time increments.

Inherited Class Attributes:
.Tock is default .tock

real

True means run in real time, Otherwise as fast as possible.

Type
boolean

limit

maximum run tyme limit then closes all doers

Type
float

done

True means completed due to limit or all deeds completed False is forced complete due to error

Type
boolean

28 Chapter 3. API Reference

hio, Release 0.3.4

doers

Doer class instances, generator methods or function callables with attributes tock, done, and opts dict().
Used throughout the execution lifecycle.

Type
list

deeds

Tuples of form (dog, retyme, doer). Where: dog is generator created by doer retyme is tyme (real or
simulated) in seconds when dog should run next doer is associated doer in .doers list used to assign its
.done state

given completion state of its dog

Used throughout the execution lifecycle. The normal case is use the default empty initialization performed
here and update in .enter().

Type
deque

timer

for real time intervals

Type
MonoTimer

Inherited Properties:
tyme: is float relative cycle time, .tyme is artificial time : is float tyme increment of .tick()

Properties:

Inherited Methods:
.tick increments .tyme by one .tock or provided tock

.enter prepare deeds, deque of triples (dog, retyme, doer)

.recur run through all deeds once

.do repeadedly call .recur until all dogs in deeds are complete or

times out do to reaching time limit

do(doers=None, limit=None, tyme=None)
Readies deeds deque from .doers or doers if any and then iteratively runs .recur over deeds deque until
completion of all deeds. Each entry in deeds is a triple (dog, retyme, doer) where:

dog is generator retyme is tyme (real or simulated) in seconds when dog should run next doer is
from .doers list used to assign its .done state given associated completion state of its dog

If interrupted by exception call .close on each dog to force exit context.

Keyboard interrupt (cntl-c) forces exit.

Once finally clause closes a generator it must be reinited before it can be run again

Parameters

• doers (iterable) – generator method or function callables with attributes tock, done,
and opts dict(). This may be used to update the .doers attribute which is used throughout
the execution lifecycle. If not provided uses .doers. Parameterization here of doers enables
some special cases. The normal case is to initialize in .__init__ or here.

• limit (float) – is real time limit on execution. Forces close of all dogs.

3.1. hio 29

hio, Release 0.3.4

• tyme (float) – is optional starting tyme. Resets .tyme to tyme whe provided. If not
provided uses current .tyme

Returns
None

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

enter(doers=None)
Enter context Returns (deque): deeds deque of triples (dog, retyme, doer) where:

dog is generator retyme is tyme (real or simulated) in seconds when dog should run next doer is
from .doers list used to assign its .done state given

completion state of its dog

Calls each generator callable (instance or function or method) in .doers to create each generator dog. Injects
own tymth function closure, and

generator function’s own tock, and opts.

Runs enter context of each dog by calling next(dog)

Parameters

• attributes (doers is list of generator method or function callables
with) – .tock is tyme increment in seconds .done is Boolean completion state .opts is
dict() of optional parameters If not provided uses .doers. The normal case is to initialize
in .__init__. or .do().

• triples (deeds is deque of deed) –

Returns
A deed is tuple of form (dog, retyme, doer). If not provided uses .deeds.

Return type
deeds deque()

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

recur(deeds=None)
Recur once through deeds deque of tuples (triples) of form (dog, retyme, doer) and update in place

Each deed is deque of tuples of form (dog, retyme, doer) where:
dog is generator retyme is tyme (real or simulated) in seconds when dog should run next doer is from
.doers list used to assign its .done state given associated completion state of its dog

Each cycle checks all generators in deeds deque and runs if retyme past. At end of cycle advances .tyme by
one .tock by calling .tick()

Parameters
deeds (deque) – tuples of form (dog, retyme, doer). Parameterization here of deeds enables
some special cases.

The Parameterization here of deeds enables some special cases such as manual testing or iteraton. The
normal case is to initialize .doers in .__init__. or .do() and to initialize .deeds in .__init__. and then update
in .enter()

exit(deeds=None)
Force exit each still opened deed calling .close on the dog generator which throws a GeneratorExit to the
generator. This executes the close context (GeneratorExit) which then excecutes the exit context in the

30 Chapter 3. API Reference

https://stackoverflow.com/questions/40528867/setting-attributes-on-func
https://stackoverflow.com/questions/40528867/setting-attributes-on-func

hio, Release 0.3.4

finally caluse. Each dogs exit is responsible for releasing resources Previously aborted or closed dogs have
already exited Close any running dogs in reverse order so that enters and exits are nested pairs so that the
corresponding exits appear in reverse order to their entes. This preserves nested resource dependencies.
For example:

enter A,

enter B,
enter C, exit C,

exit B,

exit A

Parameters
deeds (deque) – tuples of form (dog, retyme, doer). If not provided uses .deeds. Parameter-
ization here of deeds enables some special cases.

extend(doers)
Extend .doers list with doers. Ready deeds from doers and extend .doers and .deeds. Edit deeds in place so
not replace deque.

Parameters
extension. (doers is list of doers to add as) –

remove(doers)
Remove doers from .doers list and any associated deeds from .deeds deque. Force close removed deeds.

Parameters
remove. (doers is list of doers to) –

hio.base.doize(*, tock=0.0, **opts)
Returns decorator that makes decorated generator function Doist compatible. Imbues decorated generator func-
tion with attributes used by Doist.enter() or DoDoer.enter(). Only one instance of decorated function with shared
attributes is allowed.

Usage: @doize def f():

pass

Parameters

• f (tock is default tock attribute of doized) –

• attribute (opts is dictionary of remaining parameters that becomes
.opts) – of doized f

hio.base.doify(f, *, name=None, tock=0.0, **opts)
Returns Doist compatible copy, g, of converted generator function f. Each invoction of doify(f) returns a unique
copy of doified function f. Imbues copy, g, of converted generator function, f, with attributes used by Doist.enter()
or DoDoer.enter(). Allows multiple instances of copy, g, of generator function, f, each with unique attributes.

Usage: def f():

pass

c = doify(f, name=’c’)

Parameters

• function (f is generator) –

3.1. hio 31

hio, Release 0.3.4

• copy (name is new function name for returned doified copy g. Default
is to) – f.__name__

• g (tock is default tock attribute of doified copy) –

• attribute (opts is dictionary of remaining parameters that becomes
.opts) – of doified copy g

Based on: https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance

class hio.base.Doer(*, tymth=None, tock=0.0, **opts)
Bases: hio.base.tyming.Tymee

Doer base class for hierarchical structured async coroutine like generators. Doer.__call__ on instance returns
generator. Interface for Doist etc is generator function like object. Doer is generator method instance creator and
has extra methods and attributes that a plain generator function does not

The .do method executes other methods each corresponding to one of the six econtexts:

enter, recur, clean, exit, (unforced) close, abort (forced)

Actual context order may be one of:
enter, recur, clean, exit enter, recur, close, exit enter, recur, abort, exit enter, abort, exit

.done is Boolean completion state

True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.opts is dict of injected options into its .do generator by scheduler

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

Properties:

.tock is float, desired time in seconds between runs or until next run,
non negative, zero means run asap

Inherited Methods:
.wind injects ._tymth dependency from associated Tymist to get its .tyme

.__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator

.enter is enter context action method

.recur is recur context action method or generator method

.clean is clean context action method

.exit is exit context method

.close is close context method

32 Chapter 3. API Reference

https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance

hio, Release 0.3.4

.abort is abort context method

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._tock is hidden attribute for .tock property

property tock

tock property getter, get ._tock .tock is float desired .tyme increment in seconds

__call__(**kwa)
Returns generator Does not advance to first yield. The advance to first yield effectively invodes the enter
or open context on the generator. To enter either call .next or .send(None) on generator

do(tymth, *, tock=0.0, **opts)
Generator method to run this doer. Calling this method returns generator. Interface matches generator
function for compatibility. To customize create subclasses and override the lifecycle methods:

.enter, .recur, .exit, .close, .abort

Parameters

• of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme.

• value (tock is injected initial tock) –

• parameters (args is dict of injected optional additional) –

enter()

Do ‘enter’ context actions. Override in subclass. Not a generator method. Set up resources. Comparable
to context manager enter.

recur(tyme)
Do ‘recur’ context actions. Override in subclass. Regular method that perform repetitive actions once per
invocation. Assumes resource setup in .enter() and resource takedown in .exit() (see ReDoer below for
example of .recur that is a generator method)

Returns completion state of recurrence actions.
True means done False means continue

Parameters
here. (Doist feeds its .tyme through .send to .do yield which passes
it) –

.recur maybe implemented by a subclass either as a non-generator method or a generator method. This stub
here is as a non-generator method. The base class .do detects which type:

If non-generator .do method runs .recur method once per iteration
until .recur returns (True)

If generator .do method runs .recur with (yield from) until .recur
returns (see ReDoer for example of generator .recur)

3.1. hio 33

hio, Release 0.3.4

clean()

Do ‘clean’ context actions. Override in subclass. Not a generator method. Clean up resources that are
unique to a clean exit. Called by else after normal return.

exit()

Do ‘exit’ context actions. Override in subclass. Not a generator method. Clean up resources. Comparable
to context manager exit. Called by finally after normal return, close, or abort. After .exit() do returns
resulting in StopIteration.

close()

Do ‘close’ context actions. Override in subclass. Not a generator method. Forced close by thrown generator
.close() method causing GeneratorExit. .exit() is finally called after .close().

abort(ex)
Do ‘abort’ context actions. Override in subclass. Not a generator method. :param ex is Exception instance
that caused abort.:

Unexpected exception that results in generator exiting but not GeneratorExit. .exit() is finally called after
.abort().

class hio.base.DoDoer(doers=None, always=False, **kwa)
Bases: Doer

DoDoer implements Doist like functionality to allow nested scheduling of Doers. Each DoDoer runs a list of
doers like a Doist but using the tyme from its

injected tymth for the associated tymist as injected by its ultimate root parent Doist and any intervening
parent DoDoer(s).

Scheduling hierarchy: Doist->DoDoer. . . ->DoDoer->Doers

Inherited Attributes:

.done is Boolean completion state:
True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.opts is dict of injected options for its generator .do

Attributes:

Inherited Properties:

.tyme is float relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

.tymth is function wrapper closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

.tock is float, desired time in seconds between runs or until next run,
non negative, zero means run asap

Properties:

doers (list): Doer or Doist compatible generator instances,
functions, or methods.

deeds (deque): tuples of form (dog, retyme, doer) where:
dog is generator created by doer. retyme is tyme in seconds when next should run may be real or
simulated. doer is associated doer in .doers list. Used throughout the execution lifecycle. The normal
case is use the default empty initialization performed here and update in .enter().

34 Chapter 3. API Reference

hio, Release 0.3.4

always (bool): True means keep running even when all dogs in deeds
are complete. Enables dynamically managing extending or removing doers and associated deeds while
running.

Inherited Methods:
.wind injects ._tymth dependency from associated Tymist to get its .tyme .__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator .enter is enter context action method .recur is recur context
action method or generator method .clean is clean context action method .exit is exit context method .close
is close context method .abort is abort context method

Overidden Methods:
.do .enter .recur .exit

Hidden:

._tymth is injected function wrapper closure returned by .tymen() of
associated Tymist instance that returns Tymist .tyme. when called.

._tock is hidden attribute for .tock property ._always is hidden attribute for .always property ._doers is
hidden attribute for .doers property ._deeds is hidden attribute for .deeds property

property doers

doers property getter, get ._doers .doers is list of doist compatible generator instances, functions, or

methods

property deeds

deeds property getter, get ._deeds .deeds is deque of triples, each of form (dog, retyme, doer)

property always

always property getter, get ._always .always is Boolean, True means keep running even when all dogs in
deeds

are complete. Enables dynamically managing extending or removing doers and associated deeds
while running.

do(tymth, tock=0.0, doers=None, always=None, **opts)
Generator method to run this doer. Equivalent of doist.do Calling this method returns generator Interface
matched generator function for compatibility

Parameters

• of (tymth is injected function wrapper closure returned by .tymen()) –
Tymist instance. Calling tymth() returns associated Tymist .tyme.

• value (tock is injected initial tock) –

• attributes (doers is list of generator method or function callables
with) – tock, done, and opts dict(). This may be used to update the .doers attribute which
is used throughout the execution lifecycle. If not provided uses .doers. Parameterization
here of doers enables some special cases. The normal case is to initialize in .__init__.

• deeds (always is Boolean. True means keep running even when all dogs
in) – are complete. Enables dynamically managing extending or removing doers and
associated deeds while running. When not provided use .always.

• parameters (opts is dict of injected optional additional) –

3.1. hio 35

hio, Release 0.3.4

enter(doers=None)
Do ‘enter’ context actions. Equivalent of Doist.enter()

Returns deeds deque of triples (dog, retyme, doer) where:
dog is generator created by doer retyme is tyme in seconds when next should run may be real or
simulated doer is doer for dog from doers list

Calls each generator callable (function or method) in .doers to create each generator dog.

Runs enter context of each dog by calling next(dog)

Parameters
doers (list) – Doer Instance, generator method or function callables with attributes tock,
done, and opts dict(). If not provided uses .doers. Parameterization here of doers enables
some special cases. The normal case is to initialize in .__init__.

Returns
A deed is tuple of form (dog, retyme, doer). If not provided uses .deeds.

Return type
deeds deque()

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

recur(tyme, deeds=None)
Do ‘recur’ context actions. Equivalent of Doist.recur

Parameters
tyme (float) –

is output of send fed to do yield, The root scheduler
Doist feeds its .tyme which propagates down the chain of DoDoers Because tymist is in-
jected by doist or dodoer, self.tyme is same as tyme. So may use either which is more
convenient.

deeds (deque): tuples of form (dog, retyme, doer).
If not provided uses .deeds. Parameterization here of deeds enables some special cases.

Returns completion state of recurrence actions.
True means done False means continue

Cycle once through deeds deque and update in place

Each cycle checks all generators dogs in deeds deque and runs if retyme past.

exit(deeds=None)
Do ‘exit’ context actions.

Parameters
deeds (deque) – of deed tuples of form (dog, retyme, doer) If not provided uses .deeds.
Parameterization here of deeds enables some special cases.

See: https://stackoverflow.com/questions/40528867/setting-attributes-on-func For setting attributes on
bound methods.

extend(doers)
Extend .doers list with doers. Ready deeds from doers and extend .doers and .deeds. Edit deeds in place so
not replace deque.

Parameters
extension. (doers is list of doers to add as) –

36 Chapter 3. API Reference

https://stackoverflow.com/questions/40528867/setting-attributes-on-func
https://stackoverflow.com/questions/40528867/setting-attributes-on-func

hio, Release 0.3.4

remove(doers)
Remove doers from .doers list and any associated deeds from .deeds deque. Force close removed deeds.

Parameters
remove. (doers is list of doers to) –

hio.base.openFiler(cls=None, name='test', temp=True, reopen=True, clear=False, **kwa)
Context manager wrapper Filer instances for managing a filesystem directory and or files in a directory.

Defaults to using temporary directory path. Context ‘with’ statements call .close on exit of ‘with’ block

Parameters

• instance (cls is Class instance of subclass) –

• oglers (name is str name of ogler instance for filename so can have
multiple) – at different paths thar each use different log file directories

• Boolean (temp is) – Otherwise open in persistent directory, do not clear on close

• directory (True means open in temporary) – Otherwise open in persistent directory,
do not clear on close

• close (clear on) – Otherwise open in persistent directory, do not clear on close

Usage:

with openFiler(name=”bob”) as filer:

with openFiler(name=”eve”, cls=FilerSubClass) as filer:

class hio.base.Filer(name='main', base='', temp=False, headDirPath=None, perm=None, reopen=True,
clear=False, reuse=False, clean=False, filed=False, mode=None, fext=None, **kwa)

Filer instances manage file directories and files to hold keri installation specific resources like databases and
configuration files.

name

unique path component used in directory or file path name

Type
str

base

another unique path component inserted before name

Type
str

temp

True means use /tmp directory

Type
bool

headDirPath is head directory path

path is full directory path

perm is numeric os permissions for directory and/or file

Type
s

3.1. hio 37

hio, Release 0.3.4

filed

True means .path ends in file. False means .path ends in directory

Type
bool

mode

file open mode if filed

Type
str

fext

file extension if filed

Type
str

file

Type
File

opened is Boolean, True means directory created and if file then file

is opened. False otherwise

File/Directory Creation Mode Notes:
.Perm provides default restricted access permissions to directory and/or files stat.S_ISVTX | stat.S_IRUSR
| stat.S_IWUSR | stat.S_IXUSR 0o1700==960

stat.S_ISVTX is Sticky bit. When this bit is set on a directory it means
that a file in that directory can be renamed or deleted only by the owner of the file, by the owner of the
directory, or by a privileged process. When this bit is set on a file it means nothing

stat.S_IRUSR Owner has read permission. stat.S_IWUSR Owner has write permission. stat.S_IXUSR
Owner has execute permission.

HeadDirPath = /usr/local/var

TailDirPath = hio

CleanTailDirPath = hio/clean

AltHeadDirPath = ~

AltTailDirPath = .hio

AltCleanTailDirPath = .hio/clean

TempHeadDir = /tmp

TempPrefix = hio_

TempSuffix = _test

Perm

Mode = r+

Fext = text

38 Chapter 3. API Reference

hio, Release 0.3.4

reopen(temp=None, headDirPath=None, perm=None, clear=False, reuse=False, clean=False, mode=None,
fext=None, **kwa)

Open if closed or close and reopen if opened or create and open if not

Parameters

• temp (bool) – assign to .temp True means open in temporary directory, clear on close
False means open persistent directory, do not clear on close

• headDirPath (str) – optional head directory pathname for main database Default .Head-
Dirpath

• perm (int) – optional numeric os dir permissions for database directory and database files.
Default .Perm

• clear (bool) – True means remove directory upon close False means do not remove di-
rectory upon close

• reuse (bool) – True means reuse self.path if already exists False means do not reuse but
remake self.path

• clean (bool) – True means path uses clean tail variant False means path uses normal tail
variant

• mode (str) – file open mode when .filed

• fext (str) – File extension when .filed

remake(*, name='', base='', temp=None, headDirPath=None, perm=None, clean=False, filed=False,
mode=None, fext=None, **kwa)

Make and return (path. file) by opening or creating and opening if not preexistent, directory or file at path

Parameters

• name (str) – unique name alias portion of path

• base (str) – optional base inserted before name in path

• temp (bool) – optional None means ignore, True means open temporary directory, may
clear on close False menans open persistent directory, may not clear on close

• headDirPath (str) – optional head directory pathname of main database

• perm (int) – directory or file permissions such as stat.S_IRUSR Owner has read per-
mission. stat.S_IWUSR Owner has write permission. stat.S_IXUSR Owner has execute
permission.

• clean (bool) – True means make path for cleaned version and remove old directory or file
at clean path if any. False means make path normally (not clean)

• filed (bool) – True means .path is file path not directory path False means .path is direc-
tiory path not file path

• mode (str) – file open mode when .filed such as “w+”

• fext (str) – File extension when .filed

close(clear=False)
Close .file if any and if clear rm directory or file at .path

Parameters
clear (bool) – True means remove dir or file at .path

3.1. hio 39

hio, Release 0.3.4

_clearPath()

Remove directory/file at end of .path

class hio.base.FilerDoer(filer, **kwa)
Bases: hio.base.doing.Doer

Basic Filer Doer

done

completion state: True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

Type
bool

filer

instance

Type
Filer

Properties:

tyme (float): relative cycle time of associated Tymist .tyme obtained
via injected .tymth function wrapper closure.

tymth (func): closure returned by Tymist .tymeth() method.
When .tymth is called it returns associated Tymist .tyme. .tymth provides injected dependency on
Tymist tyme base.

tock (float)): desired time in seconds between runs or until next run,
non negative, zero means run asap

enter()

exit()

hio.core

hio.core Package

Subpackages

hio.core.http

hio.core.http Package

40 Chapter 3. API Reference

hio, Release 0.3.4

Submodules

hio.core.http.clienting

hio.core.http.clienting module

nonblocking http client

Module Contents

Classes

Requester Nonblocking HTTP Client Requester class
Respondent Nonblocking HTTP Client Respondent class
Client Client class nonblocking HTTP client connection man-

ager and HTTP client
ClientDoer HTTP Client Doer

Functions

openClient([cls]) Wrapper to create and open HTTP Client instances
backendRequest(tymth, *[, method, scheme, host,
port, ...])

Perform Async ReST request to Backend Server

Attributes

logger

CRLF

LF

CR

Response

hio.core.http.clienting.logger

hio.core.http.clienting.CRLF = b'\r\n'

hio.core.http.clienting.LF = b'\n'

hio.core.http.clienting.CR = b'\r'

hio.core.http.clienting.Response

3.1. hio 41

hio, Release 0.3.4

class hio.core.http.clienting.Requester(hostname='127.0.0.1', port=None, scheme='http',
method='GET', path='/', qargs=None, fragment='',
headers=None, body=b'', data=None, fargs=None,
portOptional=False)

Bases: object

Nonblocking HTTP Client Requester class

HttpVersionString

Port

reinit(hostname=None, port=None, scheme=None, method=None, path=None, qargs=None,
fragment=None, headers=None, body=None, data=None, fargs=None, portOptional=None)

Reinitialize anything that is not None This enables creating another request on a connection to the same
host port

rebuild(method=None, path=None, qargs=None, fragment=None, headers=None, body=None, data=None,
fargs=None, portOptional=None)

Reinit then build and return request message This allows sending another request to same destination

build()

Build and return request message from attributes

class hio.core.http.clienting.Respondent(redirects=None, redirectable=True, events=None, retry=None,
leid=None, **kwa)

Bases: hio.core.http.httping.Parsent

Nonblocking HTTP Client Respondent class

Retry = 100

reinit(redirectable=None, **kwa)
Reinitialize Instance See super class redirectable means allow redirection

close()

Call super to assign True to .closed Also close event source

checkPersisted()

Checks headers to determine if connection should be kept open until server closes it Sets the .persisted flag

parseHead()

Generator to parse headers in heading of .msg Yields None if more to parse Yields True if done parsing

parseBody()

Parse body

hio.core.http.clienting.openClient(cls=None, **kwa)
Wrapper to create and open HTTP Client instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openClient() as client0:
client0.accept()

42 Chapter 3. API Reference

hio, Release 0.3.4

with openClient(cls=Client) as client0:
client0.accept()

class hio.core.http.clienting.Client(connector=None, requester=None, respondent=None, name='',
uid=0, bufsize=8096, wl=None, hostname='127.0.0.1', port=None,
scheme='', method='GET', path='/', headers=None, qargs=None,
fragment='', body=b'', data=None, fargs=None, requests=None,
msg=None, dictable=None, events=None, redirectable=True,
redirects=None, responses=None, portOptional=False, **kwa)

Client class nonblocking HTTP client connection manager and HTTP client request and response processor

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

reopen()

Return result of .connector.reopen()

close()

Call .connecter.close (shutclose)

static attrify(response)
Convert response dict into named tuple Response so can access fields as attributes

respond()

Pops and returns next response from .responses if any Otherwise returns None

request(method=None, path=None, qargs=None, fragment=None, headers=None, body=None, data=None,
fargs=None, reply=None, **kwa)

Create and append request dict onto .requests with updated values from parameters. Use existing .requester
values if not provided except for body. Body/Data/fargs must be newly provided. This is a differential
request that reuses latest values if not changed. Requires that patron already be setup with scheme host port

request = dict([(‘method’, method),
(‘path’, path), (‘qargs’, dict([(“auth”, self.token.value)])), (‘headers’, dict([(‘Accept’, ‘applica-
tion/json’),

(‘Connection’, ‘Keep-Alive’), (‘Keep-Alive’, ‘timeout=60, max=100’),])),

(‘body’, body), (‘reply’, dict([(‘rid’, rid), (‘rdeck’, replies)])),])

self.patron.value.requests.append(request)

transmit(method=None, path=None, qargs=None, fragment=None, headers=None, body=None,
data=None, fargs=None, **kwa)

Rebuild and transmit request Assumes that .waited is not True. Do not use bare unless know that there is
no current request/reponse in process otherwise it clobbers .requester attributes

If the parameters are all None then use existing .requester and .respondent attributes otherwise reinit .re-
quester and .respondent if method is not None

Should only use with all None first time after that change one of the parameters.

redirect()

Perform redirect

serviceRequests()

Service requests deque

3.1. hio 43

hio, Release 0.3.4

serviceResponse()

Service Rx on connection and parse

service()

Service request response

serviceWhileGen(tymeout=0.5)
Generator Method. ServiceAll while pending requests or not a response or not tymeout

Usage: response = yield from .serviceWhileGen(tymeout=0.5)

Runs one iteration of .service() on next and yields empty bytes while not done.

Assumes associated tymist is advanced and realtime sleep delay is incurred elsewhere.

Returns response as namedtuple or None if tymeout.

hio.core.http.clienting.backendRequest(tymth, *, method='GET', scheme='', host='localhost', port=None,
path='/', qargs=None, data=None, buffered=False, tymeout=2.0)

Perform Async ReST request to Backend Server

Parameters:

Usage: (Inside a generator function)

response = yield from backendRequest()

response is the response if valid else None before response is completed the yield from yields up an empty string
‘’ once completed then response has a value

path can be full url with host port etc path takes precedence over others

class hio.core.http.clienting.ClientDoer(client, **kwa)
Bases: hio.base.doing.Doer

HTTP Client Doer

See Doer for inherited attributes, properties, and methods.

.client is HTTP Client instance

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

recur(tyme)

exit()

hio.core.http.httping

hio.core.http.httping module http async io (nonblocking) support

44 Chapter 3. API Reference

hio, Release 0.3.4

Module Contents

Classes

EventSource Server Sent Event Stream Client parser
Parsent Base class for objects that parse HTTP messages

Functions

httpDate1123(dt) Return a string representation of a date according to RFC
1123

normalizeHostPort(host[, port, defaultPort]) Given hostname host which could also be netloc which
includes port

parseQuery(query) Return dict of parsed query string.
updateQargsQuery([qargs, query]) Returns duple of updated (qargs, query)
unquoteQuery(query) Returns query string with unquoted values
packHeader(name, *values) Format and return a header line.
packChunk(msg) Return msg bytes in a chunk
parseLine(raw[, eols, kind]) Generator to parse line from raw bytearray
parseLeader(raw[, eols, kind, headers]) Generator to parse entire leader of header lines from raw

bytearray
parseChunk(raw) Generator to parse next chunk from raw bytearray
parseBom(raw[, bom]) Generator to parse bom from raw bytearray
parseStatusLine(line) Parse the response status line
parseRequestLine(line) Parse the request start line

Attributes

CRLF

LF

CR

MAX_LINE_SIZE

MAX_HEADERS

HTTP_PORT

HTTPS_PORT

HTTP_11_VERSION_STRING

CONTINUE

continues on next page

3.1. hio 45

hio, Release 0.3.4

Table 1 – continued from previous page
SWITCHING_PROTOCOLS

PROCESSING

OK

CREATED

ACCEPTED

NON_AUTHORITATIVE_INFORMATION

NO_CONTENT

RESET_CONTENT

PARTIAL_CONTENT

MULTI_STATUS

IM_USED

MULTIPLE_CHOICES

MOVED_PERMANENTLY

FOUND

SEE_OTHER

NOT_MODIFIED

USE_PROXY

TEMPORARY_REDIRECT

BAD_REQUEST

UNAUTHORIZED

PAYMENT_REQUIRED

FORBIDDEN

NOT_FOUND

METHOD_NOT_ALLOWED

NOT_ACCEPTABLE

continues on next page

46 Chapter 3. API Reference

hio, Release 0.3.4

Table 1 – continued from previous page
PROXY_AUTHENTICATION_REQUIRED

REQUEST_TIMEOUT

CONFLICT

GONE

LENGTH_REQUIRED

PRECONDITION_FAILED

REQUEST_ENTITY_TOO_LARGE

REQUEST_URI_TOO_LONG

UNSUPPORTED_MEDIA_TYPE

REQUESTED_RANGE_NOT_SATISFIABLE

EXPECTATION_FAILED

UNPROCESSABLE_ENTITY

LOCKED

FAILED_DEPENDENCY

UPGRADE_REQUIRED

PRECONDITION_REQUIRED

TOO_MANY_REQUESTS

REQUEST_HEADER_FIELDS_TOO_LARGE

INTERNAL_SERVER_ERROR

NOT_IMPLEMENTED

BAD_GATEWAY

SERVICE_UNAVAILABLE

GATEWAY_TIMEOUT

HTTP_VERSION_NOT_SUPPORTED

INSUFFICIENT_STORAGE

continues on next page

3.1. hio 47

hio, Release 0.3.4

Table 1 – continued from previous page
NOT_EXTENDED

NETWORK_AUTHENTICATION_REQUIRED

STATUS_DESCRIPTIONS

METHODS

MAXAMOUNT

_MAXLINE

_MAXHEADERS

hio.core.http.httping.CRLF = b'\r\n'

hio.core.http.httping.LF = b'\n'

hio.core.http.httping.CR = b'\r'

hio.core.http.httping.MAX_LINE_SIZE = 65536

hio.core.http.httping.MAX_HEADERS = 100

hio.core.http.httping.HTTP_PORT = 80

hio.core.http.httping.HTTPS_PORT = 443

hio.core.http.httping.HTTP_11_VERSION_STRING = HTTP/1.1

hio.core.http.httping.CONTINUE = 100

hio.core.http.httping.SWITCHING_PROTOCOLS = 101

hio.core.http.httping.PROCESSING = 102

hio.core.http.httping.OK = 200

hio.core.http.httping.CREATED = 201

hio.core.http.httping.ACCEPTED = 202

hio.core.http.httping.NON_AUTHORITATIVE_INFORMATION = 203

hio.core.http.httping.NO_CONTENT = 204

hio.core.http.httping.RESET_CONTENT = 205

hio.core.http.httping.PARTIAL_CONTENT = 206

hio.core.http.httping.MULTI_STATUS = 207

hio.core.http.httping.IM_USED = 226

hio.core.http.httping.MULTIPLE_CHOICES = 300

48 Chapter 3. API Reference

hio, Release 0.3.4

hio.core.http.httping.MOVED_PERMANENTLY = 301

hio.core.http.httping.FOUND = 302

hio.core.http.httping.SEE_OTHER = 303

hio.core.http.httping.NOT_MODIFIED = 304

hio.core.http.httping.USE_PROXY = 305

hio.core.http.httping.TEMPORARY_REDIRECT = 307

hio.core.http.httping.BAD_REQUEST = 400

hio.core.http.httping.UNAUTHORIZED = 401

hio.core.http.httping.PAYMENT_REQUIRED = 402

hio.core.http.httping.FORBIDDEN = 403

hio.core.http.httping.NOT_FOUND = 404

hio.core.http.httping.METHOD_NOT_ALLOWED = 405

hio.core.http.httping.NOT_ACCEPTABLE = 406

hio.core.http.httping.PROXY_AUTHENTICATION_REQUIRED = 407

hio.core.http.httping.REQUEST_TIMEOUT = 408

hio.core.http.httping.CONFLICT = 409

hio.core.http.httping.GONE = 410

hio.core.http.httping.LENGTH_REQUIRED = 411

hio.core.http.httping.PRECONDITION_FAILED = 412

hio.core.http.httping.REQUEST_ENTITY_TOO_LARGE = 413

hio.core.http.httping.REQUEST_URI_TOO_LONG = 414

hio.core.http.httping.UNSUPPORTED_MEDIA_TYPE = 415

hio.core.http.httping.REQUESTED_RANGE_NOT_SATISFIABLE = 416

hio.core.http.httping.EXPECTATION_FAILED = 417

hio.core.http.httping.UNPROCESSABLE_ENTITY = 422

hio.core.http.httping.LOCKED = 423

hio.core.http.httping.FAILED_DEPENDENCY = 424

hio.core.http.httping.UPGRADE_REQUIRED = 426

hio.core.http.httping.PRECONDITION_REQUIRED = 428

hio.core.http.httping.TOO_MANY_REQUESTS = 429

hio.core.http.httping.REQUEST_HEADER_FIELDS_TOO_LARGE = 431

3.1. hio 49

hio, Release 0.3.4

hio.core.http.httping.INTERNAL_SERVER_ERROR = 500

hio.core.http.httping.NOT_IMPLEMENTED = 501

hio.core.http.httping.BAD_GATEWAY = 502

hio.core.http.httping.SERVICE_UNAVAILABLE = 503

hio.core.http.httping.GATEWAY_TIMEOUT = 504

hio.core.http.httping.HTTP_VERSION_NOT_SUPPORTED = 505

hio.core.http.httping.INSUFFICIENT_STORAGE = 507

hio.core.http.httping.NOT_EXTENDED = 510

hio.core.http.httping.NETWORK_AUTHENTICATION_REQUIRED = 511

hio.core.http.httping.STATUS_DESCRIPTIONS

hio.core.http.httping.METHODS = ['GET', 'HEAD', 'PUT', 'PATCH', 'POST', 'DELETE',
'OPTIONS', 'TRACE', 'CONNECT']

hio.core.http.httping.MAXAMOUNT = 1048576

hio.core.http.httping._MAXLINE = 65536

hio.core.http.httping._MAXHEADERS = 100

exception hio.core.http.httping.HTTPException

Bases: Exception

Common base class for all non-exit exceptions.

exception hio.core.http.httping.InvalidURL

Bases: HTTPException

Common base class for all non-exit exceptions.

exception hio.core.http.httping.UnknownProtocol(version)
Bases: HTTPException

Common base class for all non-exit exceptions.

exception hio.core.http.httping.BadStatusLine(line)
Bases: HTTPException

Common base class for all non-exit exceptions.

exception hio.core.http.httping.BadRequestLine(line)
Bases: BadStatusLine

Common base class for all non-exit exceptions.

exception hio.core.http.httping.BadMethod(method)
Bases: HTTPException

Common base class for all non-exit exceptions.

50 Chapter 3. API Reference

hio, Release 0.3.4

exception hio.core.http.httping.LineTooLong(kind)
Bases: HTTPException

Common base class for all non-exit exceptions.

exception hio.core.http.httping.PrematureClosure(msg)
Bases: HTTPException

Common base class for all non-exit exceptions.

exception hio.core.http.httping.HTTPError(status, reason='', title='', detail='', fault=None,
headers=None)

Bases: Exception

HTTP error for use with Valet or Other WSGI servers to raise exceptions caught by the WSGI server.

status is int HTTP status code, e.g. 400

reason is str HTTP status text, "Unknown Error"

title is str title of error

headers is dict of extra headers to add to the response

error

An internal application error code

Type
int

__slots__ = ['status', 'reason', 'title', 'detail', 'headers', 'fault']

__repr__()

Return repr(self).

render(jsonify=False)
Render and return the attributes as a bytes If jsonify then render as serialized json

hio.core.http.httping.httpDate1123(dt)
Return a string representation of a date according to RFC 1123 (HTTP/1.1).

The supplied date must be in UTC. import datetime httpDate1123(datetime.datetime.utcnow()) ‘Wed, 30 Sep
2015 14:29:18 GMT’

hio.core.http.httping.normalizeHostPort(host, port=None, defaultPort=80)
Given hostname host which could also be netloc which includes port and or port generate and return tuple (host-
name, port) priority is if port is provided in hostname as host:port then use otherwise use port otherwise use
defaultPort

hio.core.http.httping.parseQuery(query)
Return dict of parsed query string. Utility function

hio.core.http.httping.updateQargsQuery(qargs=None, query='')
Returns duple of updated (qargs, query) Where qargs parameter is dict of query arguments and query parameter is
query string The returned qargs is updated with query string arguments and the returned query string is generated
from the updated qargs If provided, qargs may have additional fields not in query string This allows combining
query args from two sources, a dict and a string

https://www.w3.org/TR/2014/REC-html5-20141028/forms.html#url-encoded-form-data

3.1. hio 51

https://www.w3.org/TR/2014/REC-html5-20141028/forms.html#url-encoded-form-data

hio, Release 0.3.4

hio.core.http.httping.unquoteQuery(query)
Returns query string with unquoted values

hio.core.http.httping.packHeader(name, *values)
Format and return a header line.

For example: h.packHeader(‘Accept’, ‘text/html’)

hio.core.http.httping.packChunk(msg)
Return msg bytes in a chunk

hio.core.http.httping.parseLine(raw, eols=(CRLF, LF, CR), kind='event line')
Generator to parse line from raw bytearray Each line demarcated by one of eols kind is line type string for error
message

Yields None If waiting for more to parse Yields line Otherwise

Consumes parsed portions of raw bytearray

Raise error if eol not found before MAX_LINE_SIZE

hio.core.http.httping.parseLeader(raw, eols=(CRLF, LF), kind='leader header line', headers=None)
Generator to parse entire leader of header lines from raw bytearray Each line demarcated by one of eols Yields
None If more to parse Yields cimdict of headers Otherwise as indicated by empty headers

Raise error if eol not found before MAX_LINE_SIZE

hio.core.http.httping.parseChunk(raw)
Generator to parse next chunk from raw bytearray Consumes used portions of raw Yields None If waiting for
more bytes Yields tuple (size, parms, trails, chunk) Otherwise Where:

size is int size of the chunk parms is dict of chunk extension parameters trails is dict of chunk trailer
headers (only on last chunk if any) chunk is chunk if any or empty if not

Chunked-Body = *chunk
last-chunk trailer CRLF

chunk = chunk-size [chunk-extension] CRLF
chunk-data CRLF

chunk-size = 1*HEX last-chunk = 1*(“0”) [chunk-extension] CRLF chunk-extension= *(“;” chunk-ext-name
[“=” chunk-ext-val]) chunk-ext-name = token chunk-ext-val = token | quoted-string chunk-data = chunk-
size(OCTET) trailer = *(entity-header CRLF)

hio.core.http.httping.parseBom(raw, bom=codecs.BOM_UTF8)
Generator to parse bom from raw bytearray Yields None If waiting for more to parse Yields bom If found Yields
empty bytearray Otherwise Consumes parsed portions of raw bytearray

hio.core.http.httping.parseStatusLine(line)
Parse the response status line

hio.core.http.httping.parseRequestLine(line)
Parse the request start line

class hio.core.http.httping.EventSource(raw=None, events=None, dictable=False)
Bases: object

Server Sent Event Stream Client parser

Bom

52 Chapter 3. API Reference

hio, Release 0.3.4

close()

Assign True to .closed

parseEvents()

Generator to parse events from .raw bytearray and append to .events Each event is dict with the
following items:

id: event id utf-8 decoded or empty

name: event name utf-8 decoded or empty data: event data utf-8 decoded json: event data
deserialized to dict when applicable pr None

assigns .retry if any

Yields None If waiting for more bytes Yields True When done

event = *(comment / field) end-of-line comment = colon *any-char end-of-line field = 1*name-
char [colon [space] *any-char] end-of-line end-of-line = (cr lf / cr / lf / eof) eof = < matches
repeatedly at the end of the stream > lf =

0xA
cr =

0xD
space = 0x20 colon = 0x3A bom = when encoded as utf-8 b’ï»¿’ name-char = a Unicode character
other than LF, CR, or : any-char = a Unicode character other than LF or CR Event streams in this
format must always be encoded as UTF-8. [RFC3629]

parseEventStream()

Generator to parse event stream from .raw bytearray stream appends each event to .events deque.
assigns .bom if any assigns .retry if any Parses until connection closed

Each event is dict with the following items:

id: event id utf-8 decoded or empty

name: event name utf-8 decoded or empty data: event data utf-8 decoded json: event data
deserialized to dict when applicable pr None

Yields None If waiting for more bytes Yields True When completed and sets .ended to True If
BOM present at beginning of event stream then assigns to .bom and deletes. Consumes bytearray
as it parses

stream = [bom] *event event = *(comment / field) end-of-line comment = colon *any-char
end-of-line field = 1*name-char [colon [space] *any-char] end-of-line end-of-line = (cr lf / cr
/ lf / eof) eof = < matches repeatedly at the end of the stream > lf =

0xA
cr =

0xD
space = 0x20 colon = 0x3A bom = when encoded as utf-8 b’ï»¿’ name-char = a Unicode character
other than LF, CR, or : any-char = a Unicode character other than LF or CR Event streams in this
format must always be encoded as UTF-8. [RFC3629]

makeParser(raw=None)
Make event stream parser generator and assign to .parser Assign msg to .msg If provided

3.1. hio 53

hio, Release 0.3.4

parse()

Service the event stream parsing must call .makeParser to setup parser When done parsing,

.parser is None .ended is True

class hio.core.http.httping.Parsent(msg=None, dictable=None, method='GET')
Bases: object

Base class for objects that parse HTTP messages

reinit(msg=None, dictable=None, method='GET')
Reinitialize Instance msg = bytearray of request msg to parse dictable = Boolean flag If True attempt to
convert json body method = method verb of associated request

close()

Assign True to .closed and close parser

checkPersisted()

Checks headers to determine if connection should be kept open until client closes it Sets the .persisted flag

parseHead()

Generator to parse headers in heading of .msg Yields None if more to parse Yields True if done parsing

parseBody()

Parse body

parseMessage()

Generator to parse message bytearray. Parses msg if not None Otherwise parse .msg

makeParser(msg=None)
Make message parser generator and assign to .parser Assign msg to .msg If provided

parse()

Service the message parsing must call .makeParser to setup parser When done parsing,

.parser is None .ended is True

dictify()

Attempt to convert body to dict data if .dictable or json content-type

hio.core.http.serving

hio.core.http.serving classes

nonblocking http server

Module Contents

54 Chapter 3. API Reference

hio, Release 0.3.4

Classes

Requestant Nonblocking HTTP Server Requestant class
Responder Nonblocking HTTP WSGI Responder class
Server Server WSGI HTTP Server Class
CustomResponder Nonblocking HTTP Server Response class for non-wsgi

applications
Steward Manages the associated requestant and responder for an

incoming connection
BareServer BareServer class nonblocking Bare (non-WSGI) HTTP

server
StaticSink Class that provides Falcon sink endpoint for serving

static files in support
ServerDoer HTTP WSGI Server Doer

Functions

openServer([cls]) Wrapper to create and open HTTP Server instances

Attributes

logger

CRLF

LF

CR

WsgiServer

hio.core.http.serving.logger

hio.core.http.serving.CRLF = b'\r\n'

hio.core.http.serving.LF = b'\n'

hio.core.http.serving.CR = b'\r'

class hio.core.http.serving.Requestant(remoter=None, **kwa)
Bases: hio.core.http.httping.Parsent

Nonblocking HTTP Server Requestant class Parses request msg

checkPersisted()

Checks headers to determine if connection should be kept open until client closes it Sets the .persisted flag

parseHead()

Generator to parse headers in heading of .msg Yields None if more to parse Yields True if done parsing

3.1. hio 55

hio, Release 0.3.4

parseBody()

Parse body

class hio.core.http.serving.Responder(incomer, app, environ, chunkable=False, delay=None)
Nonblocking HTTP WSGI Responder class

HttpVersionString

Delay = 1.0

close()

Close any resources

reset(environ, chunkable=None)
Reset attributes for another request-response

build()

Return built head bytes from .status and .headers

write(msg)
WSGI write callback This writes out the headers the first time its called otherwise writes the msg bytes

start(status, response_headers, exc_info=None)
WSGI application start_response callable

Parameters:

status is string of status code and status reason ‘200 OK’ or simple
status code int which will be replaced with string

response_headers is list of tuples of strings of the form (field, value)
one tuple for each header example: [

(‘Content-type’, ‘text/plain’), (‘X-Some-Header’, ‘value’)

]

exc_info is optional exception info if exception occurred while
processing request in wsgi application If exc_info is supplied, and no HTTP headers have been output
yet, start_response should replace the currently-stored HTTP response headers with the newly-supplied
ones, thus allowing the application to “change its mind” about the output when an error has occurred.

However, if exc_info is provided, and the HTTP headers have already been sent, start_response must
raise an error, and should re-raise using the exc_info tuple. That is:

raise exc_info[1].with_traceback(exc_info[2]) (python3)

Nonstandard modifiction to allow for iterable/generator of body to change
headers and status before first write to support async processing of responses whose iterator/generator
yields empty before first non-empty yield. In .service yielding empty does not cause write so status
line and headers are not sent until first non-empty write.

The mode is that the app.headers and app.status are consulted to see if changed from when .start =
wsgi start_response was first called.

service()

Service wsgi compatible application

hio.core.http.serving.openServer(cls=None, **kwa)
Wrapper to create and open HTTP Server instances When used in with statement block, calls .close() on exit of
with block

56 Chapter 3. API Reference

hio, Release 0.3.4

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openServer() as server0:
server0.

with openServer(cls=BareServer) as server0:
server0.

class hio.core.http.serving.Server(name='hio.wsgi.server', app=None, reqs=None, reps=None,
servant=None, bufsize=8096, wl=None, ha=None, host='', port=None,
eha=None, scheme='', tymeout=None, **kwa)

Server WSGI HTTP Server Class

Tymeout = 5.0

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

reopen()

Return result of .servant.reopen()

close()

Close all reqs, reps, and ixes

idle()

Returns True if no connections have requests in process Useful for debugging

buildEnviron(requestant)
Returns wisgi environment dictionary for supplied requestant

closeConnection(ca)
Close and remove connection given by ca

serviceConnects()

Service new incoming connections Create requestants Timeout stale connections

serviceReqs()

Service pending requestants

serviceReps()

Service pending responders

service()

Service request response

hio.core.http.serving.WsgiServer

class hio.core.http.serving.CustomResponder(steward=None, status=200, headers=None, body=b'',
data=None)

Nonblocking HTTP Server Response class for non-wsgi applications Used by Steward

HTTP/1.1 200 OK

Content-Length: 122

Content-Type: application/json

3.1. hio 57

hio, Release 0.3.4

Date: Thu, 30 Apr 2015 19:37:17 GMT

Server: IoBook.local

HttpVersionString

reinit(status=None, headers=None, body=None, data=None)
Reinitialize anything that is not None This enables creating another response on a connection

build(status=None, headers=None, body=None, data=None)
Build and return response message

class hio.core.http.serving.Steward(remoter, requestant=None, responder=None, dictable=False)
Manages the associated requestant and responder for an incoming connection for BareServer (non-wsgi) HTTP
server

refresh()

Restart incomer tymer

respond()

Respond to request Override in subclass Echo request

pour()

Run generator to stream response message

class hio.core.http.serving.BareServer(servant=None, stewards=None, name='', bufsize=8096,
wl=None, ha=None, host='', port=None, eha=None, scheme='',
dictable=False, timeout=None, **kwa)

BareServer class nonblocking Bare (non-WSGI) HTTP server Define CustomResponder subclass to respond to
requests as per Steward

Timeout = 5.0

reopen()

Return result of .servant.reopen()

idle()

Returns True if no connections have requests in process Useful for debugging

close()

Close all ixes for all stewards

closeConnection(ca)
Close and remove connection and associated steward given by ca

serviceConnects()

Service new incoming connections Create requestants Timeout stale connections

serviceStewards()

Service pending requestants and responders

service()

Service request response

class hio.core.http.serving.StaticSink(staticDirPath=None)
Class that provides Falcon sink endpoint for serving static files in support of a client side web app.

StaticSinkBasePath = /static

58 Chapter 3. API Reference

hio, Release 0.3.4

DefaultStaticSinkBasePath = /

__call__(req, rep)

class hio.core.http.serving.ServerDoer(server, **kwa)
Bases: hio.base.doing.Doer

HTTP WSGI Server Doer

See Doer for inherited attributes, properties, and methods.

.server is HTTP WSGI Server instance

Properties:

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

recur(tyme)

exit()

Package Contents

Classes

Client Client class nonblocking HTTP client connection man-
ager and HTTP client

ClientDoer HTTP Client Doer
BareServer BareServer class nonblocking Bare (non-WSGI) HTTP

server
Server Server WSGI HTTP Server Class
ServerDoer HTTP WSGI Server Doer

Functions

openClient([cls]) Wrapper to create and open HTTP Client instances
openServer([cls]) Wrapper to create and open HTTP Server instances

Attributes

WsgiServer

exception hio.core.http.HTTPError(status, reason='', title='', detail='', fault=None, headers=None)
Bases: Exception

HTTP error for use with Valet or Other WSGI servers to raise exceptions caught by the WSGI server.

3.1. hio 59

hio, Release 0.3.4

status is int HTTP status code, e.g. 400

reason is str HTTP status text, "Unknown Error"

title is str title of error

headers is dict of extra headers to add to the response

error

An internal application error code

Type
int

__slots__ = ['status', 'reason', 'title', 'detail', 'headers', 'fault']

__repr__()

Return repr(self).

render(jsonify=False)
Render and return the attributes as a bytes If jsonify then render as serialized json

class hio.core.http.Client(connector=None, requester=None, respondent=None, name='', uid=0,
bufsize=8096, wl=None, hostname='127.0.0.1', port=None, scheme='',
method='GET', path='/', headers=None, qargs=None, fragment='', body=b'',
data=None, fargs=None, requests=None, msg=None, dictable=None,
events=None, redirectable=True, redirects=None, responses=None,
portOptional=False, **kwa)

Client class nonblocking HTTP client connection manager and HTTP client request and response processor

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

reopen()

Return result of .connector.reopen()

close()

Call .connecter.close (shutclose)

static attrify(response)
Convert response dict into named tuple Response so can access fields as attributes

respond()

Pops and returns next response from .responses if any Otherwise returns None

request(method=None, path=None, qargs=None, fragment=None, headers=None, body=None, data=None,
fargs=None, reply=None, **kwa)

Create and append request dict onto .requests with updated values from parameters. Use existing .requester
values if not provided except for body. Body/Data/fargs must be newly provided. This is a differential
request that reuses latest values if not changed. Requires that patron already be setup with scheme host port

request = dict([(‘method’, method),
(‘path’, path), (‘qargs’, dict([(“auth”, self.token.value)])), (‘headers’, dict([(‘Accept’, ‘applica-
tion/json’),

(‘Connection’, ‘Keep-Alive’), (‘Keep-Alive’, ‘timeout=60, max=100’),])),

(‘body’, body), (‘reply’, dict([(‘rid’, rid), (‘rdeck’, replies)])),])

self.patron.value.requests.append(request)

60 Chapter 3. API Reference

hio, Release 0.3.4

transmit(method=None, path=None, qargs=None, fragment=None, headers=None, body=None,
data=None, fargs=None, **kwa)

Rebuild and transmit request Assumes that .waited is not True. Do not use bare unless know that there is
no current request/reponse in process otherwise it clobbers .requester attributes

If the parameters are all None then use existing .requester and .respondent attributes otherwise reinit .re-
quester and .respondent if method is not None

Should only use with all None first time after that change one of the parameters.

redirect()

Perform redirect

serviceRequests()

Service requests deque

serviceResponse()

Service Rx on connection and parse

service()

Service request response

serviceWhileGen(tymeout=0.5)
Generator Method. ServiceAll while pending requests or not a response or not tymeout

Usage: response = yield from .serviceWhileGen(tymeout=0.5)

Runs one iteration of .service() on next and yields empty bytes while not done.

Assumes associated tymist is advanced and realtime sleep delay is incurred elsewhere.

Returns response as namedtuple or None if tymeout.

hio.core.http.openClient(cls=None, **kwa)
Wrapper to create and open HTTP Client instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openClient() as client0:
client0.accept()

with openClient(cls=Client) as client0:
client0.accept()

class hio.core.http.ClientDoer(client, **kwa)
Bases: hio.base.doing.Doer

HTTP Client Doer

See Doer for inherited attributes, properties, and methods.

.client is HTTP Client instance

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

3.1. hio 61

hio, Release 0.3.4

recur(tyme)

exit()

class hio.core.http.BareServer(servant=None, stewards=None, name='', bufsize=8096, wl=None,
ha=None, host='', port=None, eha=None, scheme='', dictable=False,
timeout=None, **kwa)

BareServer class nonblocking Bare (non-WSGI) HTTP server Define CustomResponder subclass to respond to
requests as per Steward

Timeout = 5.0

reopen()

Return result of .servant.reopen()

idle()

Returns True if no connections have requests in process Useful for debugging

close()

Close all ixes for all stewards

closeConnection(ca)
Close and remove connection and associated steward given by ca

serviceConnects()

Service new incoming connections Create requestants Timeout stale connections

serviceStewards()

Service pending requestants and responders

service()

Service request response

class hio.core.http.Server(name='hio.wsgi.server', app=None, reqs=None, reps=None, servant=None,
bufsize=8096, wl=None, ha=None, host='', port=None, eha=None, scheme='',
tymeout=None, **kwa)

Server WSGI HTTP Server Class

Tymeout = 5.0

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

reopen()

Return result of .servant.reopen()

close()

Close all reqs, reps, and ixes

idle()

Returns True if no connections have requests in process Useful for debugging

buildEnviron(requestant)
Returns wisgi environment dictionary for supplied requestant

closeConnection(ca)
Close and remove connection given by ca

62 Chapter 3. API Reference

hio, Release 0.3.4

serviceConnects()

Service new incoming connections Create requestants Timeout stale connections

serviceReqs()

Service pending requestants

serviceReps()

Service pending responders

service()

Service request response

hio.core.http.WsgiServer

hio.core.http.openServer(cls=None, **kwa)
Wrapper to create and open HTTP Server instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openServer() as server0:
server0.

with openServer(cls=BareServer) as server0:
server0.

class hio.core.http.ServerDoer(server, **kwa)
Bases: hio.base.doing.Doer

HTTP WSGI Server Doer

See Doer for inherited attributes, properties, and methods.

.server is HTTP WSGI Server instance

Properties:

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

recur(tyme)

exit()

hio.core.serial

hio.core.serial Package

3.1. hio 63

hio, Release 0.3.4

Submodules

hio.core.serial.serialing

Asynchronous (nonblocking) serial io

Module Contents

Classes

Console Class to manage non blocking interactive I/O on serial
console

ConsoleDoer Basic Console Doer. Wraps console in doer context so
opens and closes console

EchoConsoleDoer Basic Terminal Console IO to buffers. Echos input back
to output

Device Class to manage non blocking IO on serial device port.
Serial Class to manage non blocking IO on serial device port

using pyserial
Driver Nonblocking Serial Device Port Driver

Attributes

logger

hio.core.serial.serialing.logger

exception hio.core.serial.serialing.LineError

Bases: hio.hioing.HioError

Serial line error. Too big for buffer.

Usage:
raise LineError(“error message”)

class hio.core.serial.serialing.Console(bs=None)
Class to manage non blocking interactive I/O on serial console

Opens non blocking read file descriptor on console Use instance method .close to close file descriptor Use in-
stance methods .getline to read & .put to write to console Needs os module

bs

max buffer size for each read, defaults to 256

Type
int

fd

file descriptor for console

64 Chapter 3. API Reference

hio, Release 0.3.4

Type
int

opened

True means .fd opened, False means .fd closed

Type
bool

rxbs

of received characters (bytes)

Type
bytearray

reopen()

closes and reopens .fd, sets .opened

close()

closes .fd unsets .opened

get()

returns chars including newline but no more than bs characters

put()

puts characters

Hidden:
._line is bytearray of line buffer

MaxBufSize = 256

open(port='')
Opens fd on terminal console in non blocking mode.

port is the serial port device path name or if ‘’ then use os.ctermid() which returns path name of console
usually ‘/dev/tty’

os.O_NONBLOCK makes non blocking io os.O_RDWR allows both read and write. os.O_NOCTTY don’t
make this the controlling terminal of the process O_NOCTTY is only for cross platform portability BSD
never makes it the controlling terminal

Don’t use print at same time since it will mess up non blocking reads.

Works in both canonical and non-canonical input mode. In canonical mode, no chars are available to read
until eol newline is entered and eol is included in the read characters.

It appears that canonical mode is the default for fd console os.ctermid(). For other serial port fds the
characters may be available immediately.

To debug use os.isatty(fd) which returns True if the file descriptor fd is open and connected to a tty-like
device, else False.

reopen()

Idempotently opens console

close()

Closes fd.

3.1. hio 65

hio, Release 0.3.4

put(data=b'\n')
Writes data bytes to console and return number of bytes from data written.

get(bs=None)
Gets nonblocking line of bytes from console of up to bs characters including eol newline if in bs characters
otherwise must repeat get until a newline appears.

Returns empty string if no characters available else returns line. Works in both canonical and non-canonical
mode In canonical mode, no chars are available to read until eol newline is entered and eol is included in
the read characters.

Strips eol newline before returning line.

class hio.core.serial.serialing.ConsoleDoer(console, **kwa)
Bases: hio.base.doing.Doer

Basic Console Doer. Wraps console in doer context so opens and closes console

To test in WingIde must configure Debug I/O to use external console See Doer for inherited attributes, properties,
and methods.

.console is serial Console instance

enter()

exit()

class hio.core.serial.serialing.EchoConsoleDoer(console, lines=None, txbs=None, **kwa)
Bases: hio.base.doing.Doer

Basic Terminal Console IO to buffers. Echos input back to output

To test in WingIde must configure Debug I/O to use external console

See Doer for inherited attributes, properties, and methods.

.console is serial Console instance

enter()

recur(tyme)

exit()

class hio.core.serial.serialing.Device(port=None, speed=9600, bs=1024)
Class to manage non blocking IO on serial device port.

Opens non blocking read file descriptor on serial port Use instance method close to close file descriptor Use
instance methods get & put to read & write to serial device Needs os module

reopen(port=None, speed=None, bs=None)
Idempotently open serial device port Opens fd on serial port in non blocking mode.

port is the serial port device path name or if ‘’ then use os.ctermid() which returns path name of console
usually ‘/dev/tty’

os.O_NONBLOCK makes non blocking io os.O_RDWR allows both read and write. os.O_NOCTTY don’t
make this the controlling terminal of the process O_NOCTTY is only for cross platform portability BSD
never makes it the controlling terminal

Don’t use print and console at same time since it will mess up non blocking reads.

The input mode, canonical or noncanonical, is controlled by the ICANON flag see termios module.

66 Chapter 3. API Reference

hio, Release 0.3.4

Raw mode

def setraw(fd, when=TCSAFLUSH):
Put terminal into a raw mode. mode = tcgetattr(fd) mode[IFLAG] = mode[IFLAG] & ~(BRKINT |
ICRNL | INPCK | ISTRIP | IXON) mode[OFLAG] = mode[OFLAG] & ~(OPOST) mode[CFLAG]
= mode[CFLAG] & ~(CSIZE | PARENB) mode[CFLAG] = mode[CFLAG] | CS8 mode[LFLAG] =
mode[LFLAG] & ~(ECHO | ICANON | IEXTEN | ISIG) mode[CC][VMIN] = 1 mode[CC][VTIME]
= 0 tcsetattr(fd, when, mode)

set up raw mode / no echo / binary cflag |= (TERMIOS.CLOCAL|TERMIOS.CREAD) lflag &=
~(TERMIOS.ICANON|TERMIOS.ECHO|TERMIOS.ECHOE|TERMIOS.ECHOK|TERMIOS.ECHONL|

TERMIOS.ISIG|TERMIOS.IEXTEN) #|TERMIOS.ECHOPRT

for flag in (‘ECHOCTL’, ‘ECHOKE’): # netbsd workaround for Erk

if hasattr(TERMIOS, flag):
lflag &= ~getattr(TERMIOS, flag)

oflag &= ~(TERMIOS.OPOST) iflag &= ~(TERMIOS.INLCR|TERMIOS.IGNCR|TERMIOS.ICRNL|TERMIOS.IGNBRK)
if hasattr(TERMIOS, ‘IUCLC’):

iflag &= ~TERMIOS.IUCLC

if hasattr(TERMIOS, ‘PARMRK’):
iflag &= ~TERMIOS.PARMRK

close()

Closes fd.

receive()

Reads nonblocking characters from serial device up to bs characters Returns empty bytes if no characters
available else returns all available. In canonical mode no chars are available until newline is entered.

send(data=b'\n')
Writes data bytes to serial device port. Returns number of bytes sent

class hio.core.serial.serialing.Serial(port=None, speed=9600, bs=1024)
Class to manage non blocking IO on serial device port using pyserial

Opens non blocking read file descriptor on serial port Use instance method close to close file descriptor Use
instance methods get & put to read & write to serial device Needs os module

reopen(port=None, speed=None, bs=None)
Opens fd on serial port in non blocking mode.

port is the serial port device path name or if None then use os.ctermid() which returns path name of console
usually ‘/dev/tty’

close()

Closes .serial

receive()

Reads nonblocking characters from serial device up to bs characters Returns empty bytes if no characters
available else returns all available. In canonical mode no chars are available until newline is entered.

send(data=b'\n')
Writes data bytes to serial device port. Returns number of bytes sent

3.1. hio 67

hio, Release 0.3.4

class hio.core.serial.serialing.Driver(name='', uid=0, port=None, speed=9600, bs=1024,
server=None)

Nonblocking Serial Device Port Driver

serviceReceives()

Service receives until no more

clearRxbs()

Clear .rxbs

scan(start)
Returns offset of given start byte in self.rxbs Returns None if start is not given or not found If strip then
remove any bytes before offset

send(data)
Handle one tx data

tx(data)
Queue data onto .txbs

serviceSends()

Service .txbs

service()

Sevice receives and sends

Package Contents

Classes

Console Class to manage non blocking interactive I/O on serial
console

class hio.core.serial.Console(bs=None)
Class to manage non blocking interactive I/O on serial console

Opens non blocking read file descriptor on console Use instance method .close to close file descriptor Use in-
stance methods .getline to read & .put to write to console Needs os module

bs

max buffer size for each read, defaults to 256

Type
int

fd

file descriptor for console

Type
int

opened

True means .fd opened, False means .fd closed

Type
bool

68 Chapter 3. API Reference

hio, Release 0.3.4

rxbs

of received characters (bytes)

Type
bytearray

reopen()

closes and reopens .fd, sets .opened

close()

closes .fd unsets .opened

get()

returns chars including newline but no more than bs characters

put()

puts characters

Hidden:
._line is bytearray of line buffer

MaxBufSize = 256

open(port='')
Opens fd on terminal console in non blocking mode.

port is the serial port device path name or if ‘’ then use os.ctermid() which returns path name of console
usually ‘/dev/tty’

os.O_NONBLOCK makes non blocking io os.O_RDWR allows both read and write. os.O_NOCTTY don’t
make this the controlling terminal of the process O_NOCTTY is only for cross platform portability BSD
never makes it the controlling terminal

Don’t use print at same time since it will mess up non blocking reads.

Works in both canonical and non-canonical input mode. In canonical mode, no chars are available to read
until eol newline is entered and eol is included in the read characters.

It appears that canonical mode is the default for fd console os.ctermid(). For other serial port fds the
characters may be available immediately.

To debug use os.isatty(fd) which returns True if the file descriptor fd is open and connected to a tty-like
device, else False.

reopen()

Idempotently opens console

close()

Closes fd.

put(data=b'\n')
Writes data bytes to console and return number of bytes from data written.

get(bs=None)
Gets nonblocking line of bytes from console of up to bs characters including eol newline if in bs characters
otherwise must repeat get until a newline appears.

Returns empty string if no characters available else returns line. Works in both canonical and non-canonical
mode In canonical mode, no chars are available to read until eol newline is entered and eol is included in
the read characters.

3.1. hio 69

hio, Release 0.3.4

Strips eol newline before returning line.

hio.core.tcp

hio.core.tcp Package

Submodules

hio.core.tcp.clienting

hio.core.tcp.clienting Module

Module Contents

Classes

Client Nonblocking TCP Socket Client Class.
ClientTls Outgoer with Nonblocking TLS/SSL support
ClientDoer Basic TCP Client

Functions

openClient([cls]) Wrapper to create and open TCP Client instances

Attributes

logger

hio.core.tcp.clienting.logger

hio.core.tcp.clienting.openClient(cls=None, **kwa)
Wrapper to create and open TCP Client instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openClient() as client0:
client0.accept()

with openClient(cls=ClientTls) as client0:
client0.accept()

70 Chapter 3. API Reference

hio, Release 0.3.4

class hio.core.tcp.clienting.Client(tymeout=None, ha=None, host='127.0.0.1', port=56000,
reconnectable=None, bs=8096, txbs=None, rxbs=None, wl=None,
**kwa)

Bases: hio.base.tyming.Tymee

Nonblocking TCP Socket Client Class.

See tyming.Tymee for inherited attributes, properties, and methods

Attributes:

Properties:

Methods:

property host

Property that returns host in .ha duple

property port

Property that returns port in .ha duple

property accepted

Property that returns accepted state of TCP socket

property connected

Property that returns connected state of TCP socket Non-tls tcp is connected when accepted

Tymeout = 0.0

Reconnectable = False

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

reinitHostPort(ha=None, hostname='127.0.0.1', port=56000)
Reinit self.ha and self.hostname from ha = (host, port) or hostname port self.ha is of form (host, port)
where host is either dns name or ip address self.hostname is hostname as dns name host eventually is host
ip address output from normalizeHost()

actualBufSizes()

Returns duple of the the actual socket send and receive buffer size (send, receive)

open()

Opens connection socket in non blocking mode.

if socket not closed properly, binding socket gets error
OSError: (48, ‘Address already in use’)

reopen()

Idempotently opens socket

shutdown(how=socket.SHUT_RDWR)
Shutdown connected socket .cs

shutdownSend()

Shutdown send on connected socket .cs

shutdownReceive()

Shutdown receive on connected socket .cs

3.1. hio 71

hio, Release 0.3.4

close()

Shutdown and close connected socket .cs

refresh()

Restart timer

accept()

Attempt nonblocking acceptance connect to .ha Returns True if successful Returns False if not so try again
later

connect()

Attempt nonblocking connect to .ha Returns True if successful Returns False if not so try again later For
non-TLS tcp connect is done when accepted This is placeholder for subclass Tls

serviceConnect()

Service connection attempt If not already connected make a nonblocking attempt Returns .connected

receive()

Perform non blocking receive from connected socket .cs

If no data then returns None If connection closed then returns empty Otherwise returns data data is string
in python2 and bytes in python3

serviceReceives()

Service receives until no more

serviceReceiveOnce()

Retrieve from server only one reception

clearRxbs()

Clear .rxbs

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent data is string in python2
and bytes in python3

tx(data)
Copy data onto .txbs, .extend copies data.

serviceSends()

Service sends (transmits) of data in .txbs bytearray Attempt to send all of .txbs. Delete what is actually
sent.

service()

Service connect, txbs, and receives.

class hio.core.tcp.clienting.ClientTls(context=None, version=None, certify=None, hostify=None,
certedhost='', keypath=None, certpath=None, cafilepath=None,
**kwa)

Bases: Client

Outgoer with Nonblocking TLS/SSL support Nonblocking TCP Socket Client Class.

Attributes:

Properties:

Methods:

72 Chapter 3. API Reference

hio, Release 0.3.4

property connected

Property that returns connected state of TCP socket TLS tcp is connected when accepted and handshake
completed

close()

Shutdown and close connected socket .cs

wrap()

Wrap socket .cs in ssl context

handshake()

Attempt nonblocking ssl handshake to .ha Returns True if successful Returns False if not so try again later

connect()

Attempt nonblocking connect to .ha Returns True if successful Returns False if not so try again later Con-
nected when both accepted connection and TLS handshake complete

receive()

Perform non blocking receive from connected socket .cs

If no data then returns None If connection closed then returns ‘’ Otherwise returns data data is string in
python2 and bytes in python3

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent data is string in python2
and bytes in python3

class hio.core.tcp.clienting.ClientDoer(client, **kwa)
Bases: hio.base.doing.Doer

Basic TCP Client

See Doer for inherited attributes, properties, and methods.

.client is TCP Client instance

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

recur(tyme)

exit()

hio.core.tcp.serving

hio.core.tcp.serving Module

Accepter listens and accepts incoming TCP socket connections Server is subclass of Acceptor Server creates Remoters
Remoter is accepted incoming socket connection

ServerTls is subclass of Server RemoterTls is subclass of Remoter

3.1. hio 73

hio, Release 0.3.4

Module Contents

Classes

Acceptor Acceptor Base Class for Server.
Server Nonblocking TCP Socket Server Class.
ServerTls Server with Nonblocking TLS/SSL support
Remoter Class to service an incoming nonblocking TCP connec-

tion from a remote client.
RemoterTls Class to service an incoming nonblocking TCP/TLS

connection from a remote client.
ServerDoer Basic TCP Server Doer
EchoServerDoer Echo TCP Server

Functions

openServer([cls]) Wrapper to create and open TCP Server instances
initServerContext([context, version, certify, ...]) Initialize and return context for TLS Server

Attributes

logger

hio.core.tcp.serving.logger

hio.core.tcp.serving.openServer(cls=None, **kwa)
Wrapper to create and open TCP Server instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openServer() as server0:
server0.

with openServer(cls=ServerTls) as server0:
server0.

class hio.core.tcp.serving.Acceptor(ha=None, bs=8096, **kwa)
Bases: hio.base.tyming.Tymee

Acceptor Base Class for Server. Nonblocking TCP Socket Acceptor Class. Listen socket for incoming TCP
connections

See tyming.Tymee for inherited attributes, properties, and methods

74 Chapter 3. API Reference

hio, Release 0.3.4

.ha is

host = “” or “0.0.0.0” means listen on all interfaces

Type
host,port) duple (two tuple

.eha is normalized

as external facing address for TLS context

Type
host, port

.bs is buffer size

.ss is server listen socket for incoming accept requests

.axes is deque of accepte connection duples

Type
ca, cs

.opened is boolean, True if listen socket .ss opened. False otherwise

actualBufSizes()

Returns duple of the the actual socket send and receive buffer size (send, receive)

open()

Opens binds listen socket in non blocking mode.

if socket not closed properly, binding socket gets error
OSError: (48, ‘Address already in use’)

reopen()

Idempotently opens listen socket

close()

Closes listen socket.

accept()

Accept new connection nonblocking Returns duple (cs, ca) of connected socket and connected host address
Otherwise if no new connection returns (None, None)

serviceAccepts()

Service any accept requests Adds to .cxes dict key by ca

class hio.core.tcp.serving.Server(ha=None, host='', port=56000, tymeout=None, wl=None, **kwa)
Bases: Acceptor

Nonblocking TCP Socket Server Class. Listen socket for incoming TCP connections that generates Remoter
sockets for accepted connections

See tyming.Tymee for inherited attributes, properties, and methods

Inherited Attributes:

.ha is (host,port) duple (two tuple)
host = “” or “0.0.0.0” means listen on all interfaces

.eha is normalized (host, port) duple for incoming TLS connections
as external facing address for TLS context

3.1. hio 75

hio, Release 0.3.4

.bs is buffer size .ss is server listen socket for incoming accept requests .axes is deque of accepte connection
duples (ca, cs) .opened is boolean, True if listen socket .ss opened. False otherwise

.tymeout is tymeout in seconds for connection refresh

.wl is WireLog instance if any

.ixes is dict of incoming connections indexed by remote

Type
host, port

Tymeout = 1.0

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

serviceAxes()

Service axes

For each newly accepted connection in .axes create Remoter and add to .ixes keyed by ca

serviceConnects()

Service connects is method name to be used

shutdownIx(ca, how=socket.SHUT_RDWR)
Shutdown remoter given by connection address ca

shutdownSendIx(ca)
Shutdown send on remoter given by connection address ca

shutdownReceiveIx(ca)
Shutdown send on remoter given by connection address ca

closeIx(ca)
Shutdown and close remoter given by connection address ca

closeAllIx()

Shutdown and close all remoter connections

close()

Close all sockets

removeIx(ca, close=True)
Remove remoter given by connection address ca

serviceReceivesIx(ca)
Service receives for remoter by connection address ca

serviceReceivesAllIx()

Service receives for all remoters in .ixes

transmitIx(data, ca)
Queue data onto .txbs for remoter given by connection address ca

serviceSendsAllIx()

Service transmits for all remoters in .ixes

service()

Service connects and service receives and sends for all ix.

76 Chapter 3. API Reference

hio, Release 0.3.4

hio.core.tcp.serving.initServerContext(context=None, version=None, certify=None, keypath=None,
certpath=None, cafilepath=None)

Initialize and return context for TLS Server IF context is None THEN create a context

IF version is None THEN create context using ssl library default ELSE create context with version

If certify is not None then use certify value provided Otherwise use default

context = context object for tls/ssl If None use default version = ssl protocol version If None use default certify
= cert requirement If None use default

ssl.CERT_NONE = 0 ssl.CERT_OPTIONAL = 1 ssl.CERT_REQUIRED = 2

keypath = pathname of local server side PKI private key file path
If given apply to context

certpath = pathname of local server side PKI public cert file path
If given apply to context

cafilepath = Cert Authority file path to use to verify client cert
If given apply to context

class hio.core.tcp.serving.ServerTls(context=None, version=None, certify=None, keypath=None,
certpath=None, cafilepath=None, **kwa)

Bases: Server

Server with Nonblocking TLS/SSL support Nonblocking TCP Socket Server Class. Listen socket for incoming
TCP connections RemoterTLS sockets for accepted connections

See tyming.Tymee for inherited attributes, properties, and methods

Inherited Attributes:

.ha is (host,port) duple (two tuple)
host = “” or “0.0.0.0” means listen on all interfaces

.eha is normalized (host, port) duple for incoming TLS connections
as external facing address for TLS context

.bs is buffer size .ss is server listen socket for incoming accept requests .axes is deque of accepte connection
duples (ca, cs) .opened is boolean, True if listen socket .ss opened. False otherwise .timeout is timeout in
seconds for connection refresh .wl is WireLog instance if any .ixes is dict of incoming connections indexed
by remote (host, port) duple

.context is TLS context instance

.version is TLS version

.certify is boolean, True to client certify, False otherwise

.keypath is path to key file

.certpath is path to cert file

.cafilepath is path to ca file

serviceAxes()

Service accepteds

For each new accepted connection create RemoterTLS and add to .cxes Not Handshaked

3.1. hio 77

hio, Release 0.3.4

serviceCxes()

Service handshakes for every remoter in .cxes If successful move to .ixes

serviceConnects()

Service accept and handshake attempts If not already accepted and handshaked Then

make nonblocking attempt

For each successful handshaked add to .ixes Returns handshakeds

class hio.core.tcp.serving.Remoter(ha, ca, cs, tymeout=None, refreshable=True, bs=8096, wl=None,
**kwa)

Bases: hio.base.tyming.Tymee

Class to service an incoming nonblocking TCP connection from a remote client. Should only be used by an
Acceptor subclass such as Server

Tymeout = 0.0

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

shutdown(how=socket.SHUT_RDWR)
Shutdown connected socket .cs

shutdownSend()

Shutdown send on connected socket .cs

shutdownReceive()

Shutdown receive on connected socket .cs

close()

Shutdown and close connected socket .cs

refresh()

Restart tymer

receive()

Perform non blocking receive on connected socket .cs

If no data then returns None If connection closed then returns ‘’ Otherwise returns data

data is string in python2 and bytes in python3

serviceReceives()

Service receives until no more

serviceReceiveOnce()

Retrieve from server only one reception

clearRxbs()

Clear .rxbs

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent

data is string in python2 and bytes in python3

tx(data)
Queue data onto .txbs

78 Chapter 3. API Reference

hio, Release 0.3.4

serviceSends()

Service transmits For each tx if all bytes sent then keep sending until partial send or no more to send If
partial send reattach and return

class hio.core.tcp.serving.RemoterTls(context=None, version=None, certify=None, keypath=None,
certpath=None, cafilepath=None, **kwa)

Bases: Remoter

Class to service an incoming nonblocking TCP/TLS connection from a remote client. Should only be used from
Acceptor subclass Provides nonblocking TLS/SSL support

connected

True means TLS handshake completed False otherwise

Type
bool

aborted

True means client aborted TLS handshake False otherwise

Type
bool

close()

Shutdown and close connected socket .cs

wrap()

Wrap socket .cs in ssl context

handshake()

Attempt nonblocking ssl handshake to .ha Sets .connected when complete successfully Sets .aborted when
client terminates prematurely Keep trying while not connected and not aborted

receive()

Perform non blocking receive on connected socket .cs

If no data then returns None If connection closed then returns ‘’ Otherwise returns data

data is string in python2 and bytes in python3

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent

data is string in python2 and bytes in python3

class hio.core.tcp.serving.ServerDoer(server, **kwa)
Bases: hio.base.doing.Doer

Basic TCP Server Doer

See Doer for inherited attributes, properties, and methods.

.server is TCP Server instance

Properties:

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

3.1. hio 79

hio, Release 0.3.4

recur(tyme)

exit()

class hio.core.tcp.serving.EchoServerDoer(server, **kwa)
Bases: ServerDoer

Echo TCP Server Just echoes back to client whatever it receives from client

See Doer for inherited attributes, properties, and methods.

Inherited Attributes:
.server is TCP Server instance

enter()

recur(tyme)

exit()

hio.core.tcp.tcping

hio.core.tcping Module

Module Contents

Classes

Peer Nonblocking TCP Socket Peer Class.

class hio.core.tcp.tcping.Peer(**kwa)
Bases: hio.core.tcp.serving.Server

Nonblocking TCP Socket Peer Class. Supports both incoming and outgoing connections.

Package Contents

Classes

Client Nonblocking TCP Socket Client Class.
ClientTls Outgoer with Nonblocking TLS/SSL support
ClientDoer Basic TCP Client
Server Nonblocking TCP Socket Server Class.
ServerTls Server with Nonblocking TLS/SSL support
Remoter Class to service an incoming nonblocking TCP connec-

tion from a remote client.
ServerDoer Basic TCP Server Doer
EchoServerDoer Echo TCP Server

80 Chapter 3. API Reference

hio, Release 0.3.4

Functions

openClient([cls]) Wrapper to create and open TCP Client instances
openServer([cls]) Wrapper to create and open TCP Server instances

hio.core.tcp.openClient(cls=None, **kwa)
Wrapper to create and open TCP Client instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openClient() as client0:
client0.accept()

with openClient(cls=ClientTls) as client0:
client0.accept()

class hio.core.tcp.Client(tymeout=None, ha=None, host='127.0.0.1', port=56000, reconnectable=None,
bs=8096, txbs=None, rxbs=None, wl=None, **kwa)

Bases: hio.base.tyming.Tymee

Nonblocking TCP Socket Client Class.

See tyming.Tymee for inherited attributes, properties, and methods

Attributes:

Properties:

Methods:

property host

Property that returns host in .ha duple

property port

Property that returns port in .ha duple

property accepted

Property that returns accepted state of TCP socket

property connected

Property that returns connected state of TCP socket Non-tls tcp is connected when accepted

Tymeout = 0.0

Reconnectable = False

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

reinitHostPort(ha=None, hostname='127.0.0.1', port=56000)
Reinit self.ha and self.hostname from ha = (host, port) or hostname port self.ha is of form (host, port)
where host is either dns name or ip address self.hostname is hostname as dns name host eventually is host
ip address output from normalizeHost()

3.1. hio 81

hio, Release 0.3.4

actualBufSizes()

Returns duple of the the actual socket send and receive buffer size (send, receive)

open()

Opens connection socket in non blocking mode.

if socket not closed properly, binding socket gets error
OSError: (48, ‘Address already in use’)

reopen()

Idempotently opens socket

shutdown(how=socket.SHUT_RDWR)
Shutdown connected socket .cs

shutdownSend()

Shutdown send on connected socket .cs

shutdownReceive()

Shutdown receive on connected socket .cs

close()

Shutdown and close connected socket .cs

refresh()

Restart timer

accept()

Attempt nonblocking acceptance connect to .ha Returns True if successful Returns False if not so try again
later

connect()

Attempt nonblocking connect to .ha Returns True if successful Returns False if not so try again later For
non-TLS tcp connect is done when accepted This is placeholder for subclass Tls

serviceConnect()

Service connection attempt If not already connected make a nonblocking attempt Returns .connected

receive()

Perform non blocking receive from connected socket .cs

If no data then returns None If connection closed then returns empty Otherwise returns data data is string
in python2 and bytes in python3

serviceReceives()

Service receives until no more

serviceReceiveOnce()

Retrieve from server only one reception

clearRxbs()

Clear .rxbs

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent data is string in python2
and bytes in python3

tx(data)
Copy data onto .txbs, .extend copies data.

82 Chapter 3. API Reference

hio, Release 0.3.4

serviceSends()

Service sends (transmits) of data in .txbs bytearray Attempt to send all of .txbs. Delete what is actually
sent.

service()

Service connect, txbs, and receives.

class hio.core.tcp.ClientTls(context=None, version=None, certify=None, hostify=None, certedhost='',
keypath=None, certpath=None, cafilepath=None, **kwa)

Bases: Client

Outgoer with Nonblocking TLS/SSL support Nonblocking TCP Socket Client Class.

Attributes:

Properties:

Methods:

property connected

Property that returns connected state of TCP socket TLS tcp is connected when accepted and handshake
completed

close()

Shutdown and close connected socket .cs

wrap()

Wrap socket .cs in ssl context

handshake()

Attempt nonblocking ssl handshake to .ha Returns True if successful Returns False if not so try again later

connect()

Attempt nonblocking connect to .ha Returns True if successful Returns False if not so try again later Con-
nected when both accepted connection and TLS handshake complete

receive()

Perform non blocking receive from connected socket .cs

If no data then returns None If connection closed then returns ‘’ Otherwise returns data data is string in
python2 and bytes in python3

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent data is string in python2
and bytes in python3

class hio.core.tcp.ClientDoer(client, **kwa)
Bases: hio.base.doing.Doer

Basic TCP Client

See Doer for inherited attributes, properties, and methods.

.client is TCP Client instance

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

3.1. hio 83

hio, Release 0.3.4

recur(tyme)

exit()

hio.core.tcp.openServer(cls=None, **kwa)
Wrapper to create and open TCP Server instances When used in with statement block, calls .close() on exit of
with block

Parameters
instance (cls is Class instance of subclass) –

Usage:

with openServer() as server0:
server0.

with openServer(cls=ServerTls) as server0:
server0.

class hio.core.tcp.Server(ha=None, host='', port=56000, tymeout=None, wl=None, **kwa)
Bases: Acceptor

Nonblocking TCP Socket Server Class. Listen socket for incoming TCP connections that generates Remoter
sockets for accepted connections

See tyming.Tymee for inherited attributes, properties, and methods

Inherited Attributes:

.ha is (host,port) duple (two tuple)
host = “” or “0.0.0.0” means listen on all interfaces

.eha is normalized (host, port) duple for incoming TLS connections
as external facing address for TLS context

.bs is buffer size .ss is server listen socket for incoming accept requests .axes is deque of accepte connection
duples (ca, cs) .opened is boolean, True if listen socket .ss opened. False otherwise

.tymeout is tymeout in seconds for connection refresh

.wl is WireLog instance if any

.ixes is dict of incoming connections indexed by remote

Type
host, port

Tymeout = 1.0

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

serviceAxes()

Service axes

For each newly accepted connection in .axes create Remoter and add to .ixes keyed by ca

serviceConnects()

Service connects is method name to be used

84 Chapter 3. API Reference

hio, Release 0.3.4

shutdownIx(ca, how=socket.SHUT_RDWR)
Shutdown remoter given by connection address ca

shutdownSendIx(ca)
Shutdown send on remoter given by connection address ca

shutdownReceiveIx(ca)
Shutdown send on remoter given by connection address ca

closeIx(ca)
Shutdown and close remoter given by connection address ca

closeAllIx()

Shutdown and close all remoter connections

close()

Close all sockets

removeIx(ca, close=True)
Remove remoter given by connection address ca

serviceReceivesIx(ca)
Service receives for remoter by connection address ca

serviceReceivesAllIx()

Service receives for all remoters in .ixes

transmitIx(data, ca)
Queue data onto .txbs for remoter given by connection address ca

serviceSendsAllIx()

Service transmits for all remoters in .ixes

service()

Service connects and service receives and sends for all ix.

class hio.core.tcp.ServerTls(context=None, version=None, certify=None, keypath=None, certpath=None,
cafilepath=None, **kwa)

Bases: Server

Server with Nonblocking TLS/SSL support Nonblocking TCP Socket Server Class. Listen socket for incoming
TCP connections RemoterTLS sockets for accepted connections

See tyming.Tymee for inherited attributes, properties, and methods

Inherited Attributes:

.ha is (host,port) duple (two tuple)
host = “” or “0.0.0.0” means listen on all interfaces

.eha is normalized (host, port) duple for incoming TLS connections
as external facing address for TLS context

.bs is buffer size .ss is server listen socket for incoming accept requests .axes is deque of accepte connection
duples (ca, cs) .opened is boolean, True if listen socket .ss opened. False otherwise .timeout is timeout in
seconds for connection refresh .wl is WireLog instance if any .ixes is dict of incoming connections indexed
by remote (host, port) duple

.context is TLS context instance

3.1. hio 85

hio, Release 0.3.4

.version is TLS version

.certify is boolean, True to client certify, False otherwise

.keypath is path to key file

.certpath is path to cert file

.cafilepath is path to ca file

serviceAxes()

Service accepteds

For each new accepted connection create RemoterTLS and add to .cxes Not Handshaked

serviceCxes()

Service handshakes for every remoter in .cxes If successful move to .ixes

serviceConnects()

Service accept and handshake attempts If not already accepted and handshaked Then

make nonblocking attempt

For each successful handshaked add to .ixes Returns handshakeds

class hio.core.tcp.Remoter(ha, ca, cs, tymeout=None, refreshable=True, bs=8096, wl=None, **kwa)
Bases: hio.base.tyming.Tymee

Class to service an incoming nonblocking TCP connection from a remote client. Should only be used by an
Acceptor subclass such as Server

Tymeout = 0.0

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

shutdown(how=socket.SHUT_RDWR)
Shutdown connected socket .cs

shutdownSend()

Shutdown send on connected socket .cs

shutdownReceive()

Shutdown receive on connected socket .cs

close()

Shutdown and close connected socket .cs

refresh()

Restart tymer

receive()

Perform non blocking receive on connected socket .cs

If no data then returns None If connection closed then returns ‘’ Otherwise returns data

data is string in python2 and bytes in python3

serviceReceives()

Service receives until no more

86 Chapter 3. API Reference

hio, Release 0.3.4

serviceReceiveOnce()

Retrieve from server only one reception

clearRxbs()

Clear .rxbs

send(data)
Perform non blocking send on connected socket .cs. Return number of bytes sent

data is string in python2 and bytes in python3

tx(data)
Queue data onto .txbs

serviceSends()

Service transmits For each tx if all bytes sent then keep sending until partial send or no more to send If
partial send reattach and return

class hio.core.tcp.ServerDoer(server, **kwa)
Bases: hio.base.doing.Doer

Basic TCP Server Doer

See Doer for inherited attributes, properties, and methods.

.server is TCP Server instance

Properties:

wind(tymth)
Inject new tymist.tymth as new ._tymth. Changes tymist.tyme base. Updates winds .tymer .tymth

enter()

recur(tyme)

exit()

class hio.core.tcp.EchoServerDoer(server, **kwa)
Bases: ServerDoer

Echo TCP Server Just echoes back to client whatever it receives from client

See Doer for inherited attributes, properties, and methods.

Inherited Attributes:
.server is TCP Server instance

enter()

recur(tyme)

exit()

3.1. hio 87

hio, Release 0.3.4

hio.core.udp

hio.core.udp Package

Submodules

hio.core.udp.udping

hio.core.udping Module

Module Contents

Classes

Peer Class to manage non blocking I/O on UDP socket.

Attributes

logger

UDP_MAX_DATAGRAM_SIZE

UDP_MAX_SAFE_PAYLOAD

UDP_MAX_PACKET_SIZE

hio.core.udp.udping.logger

hio.core.udp.udping.UDP_MAX_DATAGRAM_SIZE

hio.core.udp.udping.UDP_MAX_SAFE_PAYLOAD = 548

hio.core.udp.udping.UDP_MAX_PACKET_SIZE

class hio.core.udp.udping.Peer(ha=None, host='', port=55000, bufsize=1024, wl=None, bcast=False)
Bases: object

Class to manage non blocking I/O on UDP socket.

actualBufSizes()

Returns duple of the the actual socket send and receive buffer size (send, receive)

open()

Opens socket in non blocking mode.

if socket not closed properly, binding socket gets error
OSError: (48, ‘Address already in use’)

88 Chapter 3. API Reference

hio, Release 0.3.4

reopen()

Idempotently open socket

close()

Closes socket and logs if any

receive()

Perform non blocking read on socket.

returns tuple of form (data, sa) if no data then returns (b”,None) but always returns a tuple with two elements

send(data, da)
Perform non blocking send on socket.

data is string in python2 and bytes in python3 da is destination address tuple (destHost, destPort)

Submodules

hio.core.coring

hio.core.coring Module

Module Contents

Functions

normalizeHost(host) Returns ip address host string in normalized dotted form
or empty string

getDefaultHost() Returns host ip address of default interface using neti-
faces

getDefaultBroadcast() Returns broadcast ip address of default interface using
netifaces

arpCreate(ether, host[, interface, temp]) Create arp entry for ethernet mac address ether at ip ad-
dress host on interface

arpDelete(host[, interface]) Delete arp entry for ip address host on interface

hio.core.coring.normalizeHost(host)
Returns ip address host string in normalized dotted form or empty string converts host parameter which may be
the dns name or ip address Prefers ipv4 addresses over ipv6 in that it will only return the ipv6 address if no ipv4
address equivalent is available

hio.core.coring.getDefaultHost()

Returns host ip address of default interface using netifaces

hio.core.coring.getDefaultBroadcast()

Returns broadcast ip address of default interface using netifaces

hio.core.coring.arpCreate(ether, host, interface='en0', temp=True)
Create arp entry for ethernet mac address ether at ip address host on interface If temp is false then the entry is
permanent otherwise its temporary

Assumes added /etc/sudoers entry to run arp with no password for user’s group $ sudo visudo

3.1. hio 89

hio, Release 0.3.4

Group to run arp as root with no password Cmnd_Alias ARP = /usr/sbin/arp %arp_group ALL=(ALL)
NOPASSWD: ARP

hio.core.coring.arpDelete(host, interface='en0')
Delete arp entry for ip address host on interface

Assumes added /etc/sudoers entry to run arp with no password for user’s group $ sudo visudo

Group to run arp as root with no password Cmnd_Alias ARP = /usr/sbin/arp %arp_group ALL=(ALL)
NOPASSWD: ARP

hio.core.wiring

hio.help.wiring module

Module Contents

Classes

WireLog For debugging of non-blocking transports, provides log
files or in memory

WireLogDoer Basic WireLog Doer

Functions

openWL([cls, name, temp]) Context manager wrapper WireLog instances.

hio.core.wiring.openWL(cls=None, name='test', temp=True, **kwa)
Context manager wrapper WireLog instances. Defaults to temporary wire logs. Context ‘with’ statements call
.close on exit of ‘with’ block

Parameters

• instance (cls is Class instance of subclass) –

• wirelogs (name is str name of wirelog instance for filename so can
have multiple) – at different paths thar each use different file name

• Boolean (temp is) – Otherwise open in persistent directory, do not clear on close

• directory (True means open in temporary) – Otherwise open in persistent directory,
do not clear on close

• close (clear on) – Otherwise open in persistent directory, do not clear on close

Usage:

with openWL(name=”bob”) as wl:
wl.writeRx

with openWL(name=”eve”, cls=SubclassedWireLog)

90 Chapter 3. API Reference

hio, Release 0.3.4

class hio.core.wiring.WireLog(rxed=True, txed=True, samed=False, filed=False, fmt=None, name='main',
temp=False, prefix=None, headDirPath=None, reopen=False, clear=False)

For debugging of non-blocking transports, provides log files or in memory buffers for logging ‘over
the wire’ network tx and rx packets as bytes

Attributes:
.rxed is Boolean True means log rx .txed is Boolean True means log tx .samed is Boolean True
means log both rx and tx to same file or buffer .filed is Boolean True means log to file False
means log to memory buffer .fmt is io write bytes printf style format string

Default is b’

%(dx)b %(who)b: %(data)b ‘ where:

who is src or dst for rx tx respectively dx is the io direction and will be set to either
b’tx’ or b’rx’ and data is the actual io data as bytes

to write io data without direction who or line feeds use fmt= b’%(data)b’

.name is str used in file name .temp is Boolean True means use /tmp directory .prefix is str used as
part of path prefix and formating .headDirPath is str used as head of path .tailDirpath is str used as
tail of path .altTailDirPath is str used a alternate tail of path .dirPath is full directory path .rxl is rx
log io file or io buffer .txl is tx log io file or io buffer .opened is Boolean, True means file is opened
Otherwise False

Prefix = hio

HeadDirPath = /usr/local/var

TailDirPath = wirelogs

AltHeadDirPath = ~

TempHeadDir = /tmp

TempPrefix = test_

TempSuffix = _temp

Format = b'\n%(dx)b %(who)b:\n%(data)b\n'

reopen(rxed=None, txed=None, samed=None, filed=None, fmt=None, name=None, temp=None,
headDirPath=None, clear=False)

Use or Create if not preexistent, directory path for file .path First closes .path if already opened. If clear is
True then also clears .path before reopening

Parameters

• ignore. (fmt is optional bytes printf format If None or unchanged
then) – Otherwise when creating io use .rxed if not provided

• ignore. – Otherwise when creating io use .txed if not provided

• ignore. – Otherwise when creating io use .same if not provided

• ignore. – Otherwise when creating io use .filed if not provided

• ignore. – Otherwise when creating io use .fmt if not provided

• name (name is optional) –

if None or unchanged then ignore otherwise recreate path
When recreating path, If not provided use .name

3.1. hio 91

hio, Release 0.3.4

• boolean (temp is optional) –

If None ignore Otherwise
Assign to .temp If True then open in temporary directory and clear on close, If False
then open persistent directory

• database (headDirPath is optional str head directory pathname of
main) –

if None or unchanged then ignore otherwise recreate path
When recreating path, If not provided use default .HeadDirpath

• closing (clear is Boolean True means clear .path when) –

flush()

flush files if any and opened. A file flush only moves from program buffer to operating system buffer. A
file fsync moves from operating system buffer to disk.

close(clear=False)
Close io logs. If clear or self.temp then remove directory at .dirPath :param clear is boolean: :param True
means clear directory at .dirPath if any:

clearDirPath()

Remove logfile directory at .dirPath

readRx()

Returns rx string buffer value if .buffify else None

readTx()

Returns tx string buffer value if .buffify else None

writeRx(data, who=b'')
Write bytes data received from source host port address tuple,

writeTx(data, who=b'')
Write bytes data transmitted to destination address da,

class hio.core.wiring.WireLogDoer(wl, **kwa)
Bases: hio.base.doing.Doer

Basic WireLog Doer

Inherited Attributes:

.done is Boolean completion state:
True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.wl is WireLog subclass

Inherited Properties:
.tyme is float ._tymist.tyme, relative cycle or artificial time .tock is float, desired time in seconds between
runs or until next run,

non negative, zero means run asap

Properties:

.wind injects ._tymist dependency

92 Chapter 3. API Reference

hio, Release 0.3.4

.__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator

.enter is enter context action method

.recur is recur context action method or generator method

.exit is exit context method

.close is close context method

.abort is abort context method

Hidden:
._tymist is Tymist instance reference ._tock is hidden attribute for .tock property

enter()

exit()

Package Contents

Classes

WireLog For debugging of non-blocking transports, provides log
files or in memory

WireLogDoer Basic WireLog Doer

Functions

openWL([cls, name, temp]) Context manager wrapper WireLog instances.

hio.core.openWL(cls=None, name='test', temp=True, **kwa)
Context manager wrapper WireLog instances. Defaults to temporary wire logs. Context ‘with’ statements call
.close on exit of ‘with’ block

Parameters

• instance (cls is Class instance of subclass) –

• wirelogs (name is str name of wirelog instance for filename so can
have multiple) – at different paths thar each use different file name

• Boolean (temp is) – Otherwise open in persistent directory, do not clear on close

• directory (True means open in temporary) – Otherwise open in persistent directory,
do not clear on close

• close (clear on) – Otherwise open in persistent directory, do not clear on close

Usage:

3.1. hio 93

hio, Release 0.3.4

with openWL(name=”bob”) as wl:
wl.writeRx

with openWL(name=”eve”, cls=SubclassedWireLog)

class hio.core.WireLog(rxed=True, txed=True, samed=False, filed=False, fmt=None, name='main',
temp=False, prefix=None, headDirPath=None, reopen=False, clear=False)

For debugging of non-blocking transports, provides log files or in memory buffers for logging ‘over
the wire’ network tx and rx packets as bytes

Attributes:
.rxed is Boolean True means log rx .txed is Boolean True means log tx .samed is Boolean True
means log both rx and tx to same file or buffer .filed is Boolean True means log to file False
means log to memory buffer .fmt is io write bytes printf style format string

Default is b’

%(dx)b %(who)b: %(data)b ‘ where:

who is src or dst for rx tx respectively dx is the io direction and will be set to either
b’tx’ or b’rx’ and data is the actual io data as bytes

to write io data without direction who or line feeds use fmt= b’%(data)b’

.name is str used in file name .temp is Boolean True means use /tmp directory .prefix is str used as
part of path prefix and formating .headDirPath is str used as head of path .tailDirpath is str used as
tail of path .altTailDirPath is str used a alternate tail of path .dirPath is full directory path .rxl is rx
log io file or io buffer .txl is tx log io file or io buffer .opened is Boolean, True means file is opened
Otherwise False

Prefix = hio

HeadDirPath = /usr/local/var

TailDirPath = wirelogs

AltHeadDirPath = ~

TempHeadDir = /tmp

TempPrefix = test_

TempSuffix = _temp

Format = b'\n%(dx)b %(who)b:\n%(data)b\n'

reopen(rxed=None, txed=None, samed=None, filed=None, fmt=None, name=None, temp=None,
headDirPath=None, clear=False)

Use or Create if not preexistent, directory path for file .path First closes .path if already opened. If clear is
True then also clears .path before reopening

Parameters

• ignore. (fmt is optional bytes printf format If None or unchanged
then) – Otherwise when creating io use .rxed if not provided

• ignore. – Otherwise when creating io use .txed if not provided

• ignore. – Otherwise when creating io use .same if not provided

• ignore. – Otherwise when creating io use .filed if not provided

94 Chapter 3. API Reference

hio, Release 0.3.4

• ignore. – Otherwise when creating io use .fmt if not provided

• name (name is optional) –

if None or unchanged then ignore otherwise recreate path
When recreating path, If not provided use .name

• boolean (temp is optional) –

If None ignore Otherwise
Assign to .temp If True then open in temporary directory and clear on close, If False
then open persistent directory

• database (headDirPath is optional str head directory pathname of
main) –

if None or unchanged then ignore otherwise recreate path
When recreating path, If not provided use default .HeadDirpath

• closing (clear is Boolean True means clear .path when) –

flush()

flush files if any and opened. A file flush only moves from program buffer to operating system buffer. A
file fsync moves from operating system buffer to disk.

close(clear=False)
Close io logs. If clear or self.temp then remove directory at .dirPath :param clear is boolean: :param True
means clear directory at .dirPath if any:

clearDirPath()

Remove logfile directory at .dirPath

readRx()

Returns rx string buffer value if .buffify else None

readTx()

Returns tx string buffer value if .buffify else None

writeRx(data, who=b'')
Write bytes data received from source host port address tuple,

writeTx(data, who=b'')
Write bytes data transmitted to destination address da,

class hio.core.WireLogDoer(wl, **kwa)
Bases: hio.base.doing.Doer

Basic WireLog Doer

Inherited Attributes:

.done is Boolean completion state:
True means completed Otherwise incomplete. Incompletion maybe due to close or abort.

.wl is WireLog subclass

Inherited Properties:
.tyme is float ._tymist.tyme, relative cycle or artificial time .tock is float, desired time in seconds between
runs or until next run,

non negative, zero means run asap

3.1. hio 95

hio, Release 0.3.4

Properties:

.wind injects ._tymist dependency

.__call__ makes instance callable

Appears as generator function that returns generator

.do is generator method that returns generator

.enter is enter context action method

.recur is recur context action method or generator method

.exit is exit context method

.close is close context method

.abort is abort context method

Hidden:
._tymist is Tymist instance reference ._tock is hidden attribute for .tock property

enter()

exit()

hio.demo

hio.demo package

Demo applications that use hio

Subpackages

hio.demo.web

hio.demo.web package

Demo web applications that use hio

Submodules

hio.demo.web.demo_web

Demo web server for static files for client side web app

96 Chapter 3. API Reference

hio, Release 0.3.4

Module Contents

Functions

run() Use hio http server

Attributes

logger

hio.demo.web.demo_web.logger

hio.demo.web.demo_web.run()

Use hio http server

hio.demo.web.demoing

Demo web server for static files for client side web app

Module Contents

hio.demo.web.demoing.logger

hio.help

hio.help package

Submodules

hio.help.decking

keri.help.decking module

Support for Deck class

Module Contents

Classes

Deck Extends deque to support deque access convenience
methods .push and .pull

3.1. hio 97

hio, Release 0.3.4

class hio.help.decking.Deck(iterable=None, maxlen=None)
Bases: collections.deque

Extends deque to support deque access convenience methods .push and .pull to remove confusion about which
side of the deque to use (left or right).

Extends deque with .push an .pull methods to support a different pattern for access. .push does not allow a value
of None to be added to the Deck. This enables retrieval with .pull(emptive=True) which returns None when
empty instead of raising IndexError. This allows use of the walrus operator on a pull to both assign and check
for empty. For example:

deck.extend([False, “”, []]) # falsy elements but not None stuff = [] while (x := deck.pull(emptive=True)) is not
None:

stuff.append(x)

assert stuff == [False, “”, []] assert not deck

Local methods: .push(x) = add x if x is not None to the right side of deque (like append) .pull(x) = remove and
return element from left side of deque (like popleft)

Inherited methods from deque: .append(x) = add x to right side of deque .appendleft(x) = add x to left side of
deque .clear() = clear all items from deque leaving it a length 0 .count(x) = count the number of deque elements
equal to x. .extend(iterable) = append elements of iterable to right side .extendleft(iterable) = append elemets of
iterable to left side

(this reverses iterable)

.pop() = remove and return element from right side
if empty then raise IndexError

.popleft() = remove and return element from left side
if empty then raise IndexError

.remove(x) = remove first occurence of x left to right
if not found raise ValueError

.rotate(n) = rotate n steps to right if neg rotate to left

Built in methods supported: len(d) reversed(d) copy.copy(d) copy.deepcopy(d) subscripts d[0] d[-1]

Attributes: .maxlen = maximum size of Deck or None if unbounded

__repr__()

Custome repr for Deck

push(elem: Any)
If not None, add elem to right side of deque, Otherwise ignore :param elem: element to be appended to
deck (deque) :type elem: Any

pull(emptive=False)
Remove and return elem from left side of deque, If empty and emptive return None else raise IndexError

Parameters
emptive (bool) – True means return None instead of raise IndexError when attempt to pull
False means normal behavior of deque

98 Chapter 3. API Reference

hio, Release 0.3.4

hio.help.helping

hio.help.helping module

Module Contents

Classes

NonStringIterable Allows isinstance check for iterable that is not a string
NonStringSequence Allows isinstance check for sequence that is not a string

Functions

copyfunc(f[, name]) Copy a function in detail.
attributize(genie) Decorator function:
repack(n, seq[, default]) Repacks seq into a generator of len n and returns the gen-

erator.
just(n, seq[, default]) Returns a generator of just the first n elements of seq and

substitutes
nonStringIterable(obj) Returns: (bool) True if obj is non-string iterable, False

otherwise
nonStringSequence(obj) Returns: (bool) True if obj is non-string sequence, False

otherwise
isIterator(obj) Returns True if obj is an iterator object, that is,
ocfn(path[, mode, perm]) Atomically open or create file from filepath.
dump(data, path) Serialize data dict and write to file given by path where

serialization is
load(path) Return data read from file path as dict

hio.help.helping.copyfunc(f, name=None)
Copy a function in detail. To change name of func provide name parameter

functools to update_wrapper assigns and updates following attributes WRAPPER_ASSIGNMENTS = (‘__mod-
ule__’, ‘__name__’, ‘__qualname__’, ‘__doc__’,

‘__annotations__’)

WRAPPER_UPDATES = (‘__dict__’,) Based on https://stackoverflow.com/questions/6527633/
how-can-i-make-a-deepcopy-of-a-function-in-python https://stackoverflow.com/questions/13503079/
how-to-create-a-copy-of-a-python-function

hio.help.helping.attributize(genie)
Decorator function:

Python generators do not support adding attributes. Adding support for attributes provides a way to pass infor-
mation from a WSGI App that returns a generator to a WSGI server via the generator after the WSGI app has
already started returning its body. The hio.http.Server WSGI server looks for the attributes ._status and ._headers
and substitutes these if present. This allows a streaming WSGI App body iterator to later modify the headers
and status taht will be returned before the body iterator began iterating. This is useful for web hooks or backend
requests that are serviced by an async coroutine based WSGI app so that they may leverage the streaming support
of standard WSGI but use a the coroutine based hio.http.Server as an async WSGI server.

3.1. hio 99

https://stackoverflow.com/questions/6527633/how-can-i-make-a-deepcopy-of-a-function-in-python
https://stackoverflow.com/questions/6527633/how-can-i-make-a-deepcopy-of-a-function-in-python
https://stackoverflow.com/questions/13503079/how-to-create-a-copy-of-a-python-function
https://stackoverflow.com/questions/13503079/how-to-create-a-copy-of-a-python-function

hio, Release 0.3.4

This decorator takes a Duck Typing approach to decorating a generator function or method that returns a new
function type instance that when called will return a generator like object that supports attributes. the new
wrapped object acts like a generator but with attributes.

Parameters
genie (generator function, generator method) – is either a generator function that re-
turns a generator object a generator method that returns a generator object

If genie is a generator function then a reference to its wrapper
is injected as the first positional argument to the orginal generator function. The convention is to use the
parameter ‘me’ to refer to the injected reference to the wrapper.

If genie is a generator method, that is, its first parameter is ‘self’
then a reference to its wrapper is injected as the second positional argument to the original generator method.
the convention is to use the parameter ‘me’ to refer to the injected reference to the wrapper so as not to collide
with the ‘self’ instance reference.

When wrapped the new type is AttributiveGenerator

Usage: # decorated generator function @attributize def bar(me, req=None, rep=None):

me._status = 400 # or copy from rep.status me._headers = odict(example=”Hi”) # or copy from
rep.headers yield b”” yield b”” yield b”Hello There” return b”Goodbye”

gen = bar() msg = next(gen) # attributes set after first next gen._status gen._headers

decorated generator method class R:

@attributize def bar(self, me, req=None, rep=None):

self.name = “Peter” me._status = 400 # or copy from rep.status me._headers = od-
ict(example=”Hi”) # or copy from rep.headers yield b”” yield b”” yield b”Hello There ”
+ self.name.encode() return b”Goodbye”

r = R() gen = r.bar() msg = next(gen) # attributes set after first next gen._status gen._headers

use as function wrapper directly instead of as decorator def gf(me, x): # convention injected reference to
attributed wrapper is ‘me’

me.x = 5 me.y = ‘a’ cnt = 0 while cnt < x:

yield cnt cnt += 1

agf = attributize(gf) ag = agf(3) # body of gf is not run until first next call assert isIterator(ag) assert not hasattr(ag,
‘x’) assert not hasattr(ag, ‘y’) n = next(ag) # first run here which sets up attributes assert n == 0 assert hasattr(ag,
‘x’) assert hasattr(ag, ‘y’) assert ag.x == 5 assert ag.y ==’a’ n = next(ag) assert n == 1

Adding attributes to this injected reference makes them available as attributes of the resultant wrapper.

The HTTP WSGI server at hio.core.http.serving.Server uses an instance of hio.core.http.serving.Responder to
generate the response for each WSGI request. The Responder instance checks its WSGI app generator for exis-
tence of the attributes ._status and ._headers. If so then it overrides its default response status with ._status and
updates its default response headers with the headers in ._header. This allows a backend (webhook) to conve-
niently influence the response status and headers. The response body is returned by the generator itself.

Background: Unlike Python functions, Python generators do not support custom attributes and the generator
locals dict at .gi_frame.f_locals dissappears once the generator is complete so its inconvenient.

Fixed attributes of generator objects. [‘.__next__’, ‘__iter__’, ‘close’, ‘gi_code’, ‘gi_frame’, ‘gi_running’,
‘gi_yieldfrom’, ‘send’, ‘throw’]

100 Chapter 3. API Reference

hio, Release 0.3.4

hio.help.helping.repack(n, seq, default=None)
Repacks seq into a generator of len n and returns the generator. The purpose is to enable unpacking into n
variables. The first n-1 elements of seq are returned as the first n-1 elements of the generator and any remaining
elements are returned in a tuple as the last element of the generator default (None) is substituted for missing
elements when len(seq) < n

Example:

x = (1, 2, 3, 4) tuple(repack(3, x)) (1, 2, (3, 4))

x = (1, 2, 3) tuple(repack(3, x)) (1, 2, (3,))

x = (1, 2) tuple(repack(3, x)) (1, 2, ())

x = (1,) tuple(repack(3, x)) (1, None, ())

x = () tuple(repack(3, x)) (None, None, ())

hio.help.helping.just(n, seq, default=None)
Returns a generator of just the first n elements of seq and substitutes default (None) for any missing elements.
This guarantees that a generator of exactly n elements is returned. This is to enable unpacking into n varaibles

Example:

x = (1, 2, 3, 4) tuple(just(3, x)) (1, 2, 3) x = (1, 2, 3) tuple(just(3, x)) (1, 2, 3) x = (1, 2) tuple(just(3, x)) (1, 2,
None) x = (1,) tuple(just(3, x)) (1, None, None) x = () tuple(just(3, x)) (None, None, None)

class hio.help.helping.NonStringIterable

Allows isinstance check for iterable that is not a string if isinstance(x, NonStringIterable):

classmethod __subclasshook__(C)
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

class hio.help.helping.NonStringSequence

Allows isinstance check for sequence that is not a string if isinstance(x, NonStringSequence):

classmethod __subclasshook__(C)
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

hio.help.helping.nonStringIterable(obj)
Returns: (bool) True if obj is non-string iterable, False otherwise

Another way that is less future proof return (hasattr(x, ‘__iter__’) and not isinstance(x, (str, bytes)))

hio.help.helping.nonStringSequence(obj)
Returns: (bool) True if obj is non-string sequence, False otherwise

hio.help.helping.isIterator(obj)
Returns True if obj is an iterator object, that is,

has an __iter__ method has a __next__ method .__iter__ is callable and returns obj

Otherwise returns False

3.1. hio 101

hio, Release 0.3.4

hio.help.helping.ocfn(path, mode='r+', perm=stat.S_IRUSR | stat.S_IWUSR)
Atomically open or create file from filepath.

If file already exists, Then open file using openMode Else create file using write update mode If not binary Else

write update binary mode

Returns file object

If binary Then If new file open with write update binary mode

x = stat.S_IRUSR | stat.S_IWUSR 384 == 0o600 436 == octal 0664

hio.help.helping.dump(data, path)
Serialize data dict and write to file given by path where serialization is given by path’s extension of either JSON,
MsgPack, or CBOR for extension .json, .mgpk, or .cbor respectively

hio.help.helping.load(path)
Return data read from file path as dict file may be either json, msgpack, or cbor given by extension .json, .mgpk,
or .cbor respectively Otherwise raise IOError

hio.help.hicting

hio.help.hicting module

Module Contents

Classes

Hict Hict is a Case Insensitive Keyed Multiple valued dictio-
nary like class that

Mict Mict is a multiple valued dictionary like class that ex-
tends MultiDict.

class hio.help.hicting.Hict

Bases: multidict.CIMultiDict

Hict is a Case Insensitive Keyed Multiple valued dictionary like class that extends CIMultiDict and is used for
HTTP headers which have case insentive labels. Insertion order of keys preserved. Associated with each key is
a valuelist i.e. a list of values for that key.

https://multidict.readthedocs.io/en/stable/ CIMultiDict keys must be subclass of str no ints allowed In CIMulti-
Dict:

.add(key,value) appends value to the valuelist at key

m[“key”] = value replaces the valuelist at key with [value]

m[“key”] returns the first added element of the valuelist at key

MultiDict methods access values in FIFO order Hict adds method to access values in LIFO order

Extended methods in Hict but not in CIMultiDict are:
nabone(key [,default]) get last value at key else default or KeyError nab(key [,default]) get last value at key
else default or None naball(key [,default]) get all values inverse order else default or KeyError firsts() get
all items where item value is first inserted value at key lasts() get all items where item value is last insterted
value at key

102 Chapter 3. API Reference

https://multidict.readthedocs.io/en/stable/

hio, Release 0.3.4

__repr__()

nabone(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns last value at key if key in dict else default raises KeyError if key not in dict and default not provided.

nab(key, *pa, **kwa)

Usage:
.nab(key [, default])

returns last value at key if key in dict else default returns None if key not in dict and default not provided.

naball(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns list of values at key if key in dict else default raises KeyError if key not in dict and default not
provided.

firsts()

Returns list of (key, value) pair where each value is first value at key but with no duplicate keys. MultiDict
.keys() returns a key for each duplicate value

lasts()

Returns list of (key, value) pairs where each value is last value at key but with no duplicate keys. MultiDict
.keys() returns a key for each duplicate value

class hio.help.hicting.Mict

Bases: multidict.MultiDict

Mict is a multiple valued dictionary like class that extends MultiDict. Insertion order of keys preserved. Asso-
ciated with each key is a valuelist i.e. a list of values for that key.

https://multidict.readthedocs.io/en/stable/ MultiDict keys must be subclass of str no ints allowed In MultiDict:

.add(key,value) appends value to the valuelist at key

m[“key”] = value replaces the valuelist at key with [value]

m[“key”] returns the first added element of the valuelist at key

MultiDict methods access values in FIFO order Mict adds methods to access values in LIFO order

Extended methods in Mict but not in MultiDict are:
nabone(key [,default]) get last value at key else default or KeyError nab(key [,default]) get last value at key
else default or None naball(key [,default]) get all values inverse order else default or KeyError

__repr__()

nabone(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns last value at key if key in dict else default raises KeyError if key not in dict and default not provided.

3.1. hio 103

https://multidict.readthedocs.io/en/stable/

hio, Release 0.3.4

nab(key, *pa, **kwa)

Usage:
.nab(key [, default])

returns last value at key if key in dict else default returns None if key not in dict and default not provided.

naball(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns list of values at key if key in dict else default raises KeyError if key not in dict and default not
provided.

firsts()

Returns list of (key, value) pair where each value is first value at key No duplicate keys

lasts()

Returns list of (key, value) pairs where each value is last value at key No duplicate keys

hio.help.ogling

hio.help.ogling module

Provides python stdlib logging module support

Module Contents

Classes

Ogler Olger instances provide loggers as global logging facility

Functions

initOgler([level]) Initialize the ogler global instance once
openOgler([cls, name, temp]) Context manager wrapper Ogler instances.

hio.help.ogling.initOgler(level=logging.CRITICAL, **kwa)
Initialize the ogler global instance once Usage:

At top level of module in project # assign ogler as module global instance availabe at module-
name.ogler ogler = hio.help.ogling.initOgler()

module is mypackage.help then ogler at mypackage.help.ogler

Critical is most severe to restrict logging by default

Parameters

• None (force is Boolean True is to force reinit even if global ogler is
not) –

• level (level is default logging) –

104 Chapter 3. API Reference

hio, Release 0.3.4

This should be called in package .__init__ to insure that global ogler is defined by default. Users may then reset
level and reopen log file if need be before calling ogler.getLoggers()

hio.help.ogling.openOgler(cls=None, name='test', temp=True, **kwa)
Context manager wrapper Ogler instances. Defaults to temporary file logs. Context ‘with’ statements call .close
on exit of ‘with’ block

Parameters

• instance (cls is Class instance of subclass) –

• oglers (name is str name of ogler instance for filename so can have
multiple) – at different paths thar each use different log file directories

• Boolean (temp is) – Otherwise open in persistent directory, do not clear on close

• directory (True means open in temporary) – Otherwise open in persistent directory,
do not clear on close

• close (clear on) – Otherwise open in persistent directory, do not clear on close

Usage:

with openOgler(name=”bob”) as ogler:
logger = ogler.getLogger()

with openOgler(name=”eve”, cls=SubclassedOgler)

class hio.help.ogling.Ogler(name='main', level=logging.ERROR, temp=False, prefix=None,
headDirPath=None, reopen=False, clear=False, consoled=True,
syslogged=True, filed=True, when='H', interval=1, count=48)

Olger instances provide loggers as global logging facility Only need one Ogler per application Uses python stdlib
logging module, logging.getLogger(name). Multiple calls to .getLogger() with the same name will always return
a

reference to the same Logger object.

name

usage specific component used in file name

Type
str

level

logging severity level

Type
int

temp

True means use /tmp directory

Type
bool

prefix

application specific path prefix and formating

Type
str

3.1. hio 105

hio, Release 0.3.4

headDirPath

head of path

Type
str

dirPath

full directory path

Type
str

path

full file path

Type
str

opened

True means file is opened, False not opened

Type
bool

consoled

True means log to console (stderr), False do not

Type
bool

syslogged

True means log to syslog, False do not

Type
bool

filed

True means log to rotating file at .path, False do not

Type
bool

when

interval type for timed rotating file handler

Type
str

interval

length of interval of type when

Type
int

count

backup count number of backups to keep

Type
int

Prefix = hio

106 Chapter 3. API Reference

hio, Release 0.3.4

HeadDirPath = /usr/local/var

TailDirPath = logs

AltHeadDirPath = ~

TempHeadDir = /tmp

TempPrefix = test_

TempSuffix = _temp

reopen(name=None, temp=None, headDirPath=None, clear=False)
Use or Create if not preexistent, directory path .dirPath for file .path First closes .path if already opened. If
clear is True then also clears .path before reopening

Parameters

• name (name is optional) –

if None or unchanged then ignore otherwise recreate path
When recreating path, If not provided use .name

• boolean (temp is optional) –

If None ignore Otherwise
Assign to .temp If True then open temporary directory, If False then open persistent
directory

• database (headDirPath is optional str head directory pathname of
main) –

if None or unchanged then ignore otherwise recreate path
When recreating path, If not provided use default .HeadDirpath

• closing (clear is Boolean True means clear .path when) –

close(clear=False)
Set .opened to False and remove directory at .path :param clear is boolean: :param True means clear direc-
tory:

clearDirPath()

Remove logfile directory at .dirPath

resetLevel(name=__name__, level=None, globally=False)
Resets the level of preexisting loggers to level. If level is None then use .level

getLogger(name=__name__, level=None)
Returns Basic Logger default is to name logger after module

hio.help.timing

hio.help.timing module

3.1. hio 107

hio, Release 0.3.4

Module Contents

Classes

Timer Class to manage real elaspsed time using time module.
MonoTimer Class to manage real elaspsed time using time module

but with monotonically

exception hio.help.timing.TimerError

Bases: hio.hioing.HioError

Generic Timer Errors Usage:

raise TimerError(“error message”)

exception hio.help.timing.RetroTimerError

Bases: TimerError

Error due to real time being retrograded before start time of timer Usage:

raise RetroTimerError(“error message”)

class hio.help.timing.Timer(duration=0.0, start=None, **kwa)
Bases: hio.hioing.Mixin

Class to manage real elaspsed time using time module. .. attribute:: ._start is start tyme in seconds

._stop is stop tyme in seconds

Properties:
.duration is float time duration in seconds of timer from ._start to ._stop .elaspsed is float time elasped in
seconds since ._start .remaining is float time remaining in seconds until ._stop .expired is boolean, True if
expired, False otherwise, i.e. time >= ._stop

.start() start timer at current time

.restart() = restart timer at last ._stop so no time lost

property duration

duration property getter, .duration = ._stop - ._start .duration is float duration tyme

property elapsed

elapsed time property getter, Returns elapsed time in seconds (fractional) since ._start.

property remaining

remaining time property getter, Returns remaining time in seconds (fractional) before ._stop.

property expired

Returns True if timer has expired, False otherwise. time.time() >= ._stop,

start(duration=None, start=None)

Starts Timer of duration secs at start time start secs.
If duration not provided then uses current duration If start not provided then starts at current time.time()

restart(duration=None)
Lossless restart of Timer at start = ._stop for duration if provided, Otherwise current duration. No time lost.
Useful to extend Timer so no time lost

108 Chapter 3. API Reference

hio, Release 0.3.4

class hio.help.timing.MonoTimer(duration=0.0, start=None, retro=True)
Bases: Timer

Class to manage real elaspsed time using time module but with monotonically increating time guarantee in spite
of system time being retrograded.

If the system clock is retrograded (moved back in time) while the timer is running then time.time() could move
to before the start time. MonoTimer detects this retrograde and if retro is True then retrogrades the start and stop
times back Otherwise it raises a TimerRetroError. MonoTimer is not able to detect a prograded clock (moved
forward in time)

._start is start time in seconds

._stop is stop time in seconds

._last is last measured time in seconds with retrograde handling

.retro is boolean If True retrograde ._start and ._stop when time is retrograded.

Properties:
.duration is float time duration in seconds of timer from ._start to ._stop .elaspsed is float time elasped in
seconds since ._start .remaining is float time remaining in seconds until ._stop .expired is boolean True if
expired, False otherwise, i.e. time >= ._stop .latest is float latest measured time in seconds with retrograte
handling

.start() = start timer at current time returns start time

.restart() = restart timer at last ._stop so no time lost, returns start time

property elapsed

elapsed time property getter, Returns elapsed time in seconds (fractional) since ._start.

property remaining

remaining time property getter, Returns remaining time in seconds (fractional) before ._stop.

property expired

Returns True if timer has expired, False otherwise. .latest >= ._stop,

property latest

latest measured time property getter, Returns latest measured time in seconds adjusted for retrograded
system time.

Package Contents

Classes

Deck Extends deque to support deque access convenience
methods .push and .pull

Hict Hict is a Case Insensitive Keyed Multiple valued dictio-
nary like class that

Mict Mict is a multiple valued dictionary like class that ex-
tends MultiDict.

Timer Class to manage real elaspsed time using time module.
MonoTimer Class to manage real elaspsed time using time module

but with monotonically

3.1. hio 109

hio, Release 0.3.4

Attributes

ogler

hio.help.ogler

class hio.help.Deck(iterable=None, maxlen=None)
Bases: collections.deque

Extends deque to support deque access convenience methods .push and .pull to remove confusion about which
side of the deque to use (left or right).

Extends deque with .push an .pull methods to support a different pattern for access. .push does not allow a value
of None to be added to the Deck. This enables retrieval with .pull(emptive=True) which returns None when
empty instead of raising IndexError. This allows use of the walrus operator on a pull to both assign and check
for empty. For example:

deck.extend([False, “”, []]) # falsy elements but not None stuff = [] while (x := deck.pull(emptive=True)) is not
None:

stuff.append(x)

assert stuff == [False, “”, []] assert not deck

Local methods: .push(x) = add x if x is not None to the right side of deque (like append) .pull(x) = remove and
return element from left side of deque (like popleft)

Inherited methods from deque: .append(x) = add x to right side of deque .appendleft(x) = add x to left side of
deque .clear() = clear all items from deque leaving it a length 0 .count(x) = count the number of deque elements
equal to x. .extend(iterable) = append elements of iterable to right side .extendleft(iterable) = append elemets of
iterable to left side

(this reverses iterable)

.pop() = remove and return element from right side
if empty then raise IndexError

.popleft() = remove and return element from left side
if empty then raise IndexError

.remove(x) = remove first occurence of x left to right
if not found raise ValueError

.rotate(n) = rotate n steps to right if neg rotate to left

Built in methods supported: len(d) reversed(d) copy.copy(d) copy.deepcopy(d) subscripts d[0] d[-1]

Attributes: .maxlen = maximum size of Deck or None if unbounded

__repr__()

Custome repr for Deck

push(elem: Any)
If not None, add elem to right side of deque, Otherwise ignore :param elem: element to be appended to
deck (deque) :type elem: Any

110 Chapter 3. API Reference

hio, Release 0.3.4

pull(emptive=False)
Remove and return elem from left side of deque, If empty and emptive return None else raise IndexError

Parameters
emptive (bool) – True means return None instead of raise IndexError when attempt to pull
False means normal behavior of deque

class hio.help.Hict

Bases: multidict.CIMultiDict

Hict is a Case Insensitive Keyed Multiple valued dictionary like class that extends CIMultiDict and is used for
HTTP headers which have case insentive labels. Insertion order of keys preserved. Associated with each key is
a valuelist i.e. a list of values for that key.

https://multidict.readthedocs.io/en/stable/ CIMultiDict keys must be subclass of str no ints allowed In CIMulti-
Dict:

.add(key,value) appends value to the valuelist at key

m[“key”] = value replaces the valuelist at key with [value]

m[“key”] returns the first added element of the valuelist at key

MultiDict methods access values in FIFO order Hict adds method to access values in LIFO order

Extended methods in Hict but not in CIMultiDict are:
nabone(key [,default]) get last value at key else default or KeyError nab(key [,default]) get last value at key
else default or None naball(key [,default]) get all values inverse order else default or KeyError firsts() get
all items where item value is first inserted value at key lasts() get all items where item value is last insterted
value at key

__repr__()

nabone(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns last value at key if key in dict else default raises KeyError if key not in dict and default not provided.

nab(key, *pa, **kwa)

Usage:
.nab(key [, default])

returns last value at key if key in dict else default returns None if key not in dict and default not provided.

naball(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns list of values at key if key in dict else default raises KeyError if key not in dict and default not
provided.

firsts()

Returns list of (key, value) pair where each value is first value at key but with no duplicate keys. MultiDict
.keys() returns a key for each duplicate value

lasts()

Returns list of (key, value) pairs where each value is last value at key but with no duplicate keys. MultiDict
.keys() returns a key for each duplicate value

3.1. hio 111

https://multidict.readthedocs.io/en/stable/

hio, Release 0.3.4

class hio.help.Mict

Bases: multidict.MultiDict

Mict is a multiple valued dictionary like class that extends MultiDict. Insertion order of keys preserved. Asso-
ciated with each key is a valuelist i.e. a list of values for that key.

https://multidict.readthedocs.io/en/stable/ MultiDict keys must be subclass of str no ints allowed In MultiDict:

.add(key,value) appends value to the valuelist at key

m[“key”] = value replaces the valuelist at key with [value]

m[“key”] returns the first added element of the valuelist at key

MultiDict methods access values in FIFO order Mict adds methods to access values in LIFO order

Extended methods in Mict but not in MultiDict are:
nabone(key [,default]) get last value at key else default or KeyError nab(key [,default]) get last value at key
else default or None naball(key [,default]) get all values inverse order else default or KeyError

__repr__()

nabone(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns last value at key if key in dict else default raises KeyError if key not in dict and default not provided.

nab(key, *pa, **kwa)

Usage:
.nab(key [, default])

returns last value at key if key in dict else default returns None if key not in dict and default not provided.

naball(key, *pa, **kwa)

Usage:
.nabone(key [, default])

returns list of values at key if key in dict else default raises KeyError if key not in dict and default not
provided.

firsts()

Returns list of (key, value) pair where each value is first value at key No duplicate keys

lasts()

Returns list of (key, value) pairs where each value is last value at key No duplicate keys

class hio.help.Timer(duration=0.0, start=None, **kwa)
Bases: hio.hioing.Mixin

Class to manage real elaspsed time using time module. .. attribute:: ._start is start tyme in seconds

._stop is stop tyme in seconds

Properties:
.duration is float time duration in seconds of timer from ._start to ._stop .elaspsed is float time elasped in
seconds since ._start .remaining is float time remaining in seconds until ._stop .expired is boolean, True if
expired, False otherwise, i.e. time >= ._stop

112 Chapter 3. API Reference

https://multidict.readthedocs.io/en/stable/

hio, Release 0.3.4

.start() start timer at current time

.restart() = restart timer at last ._stop so no time lost

property duration

duration property getter, .duration = ._stop - ._start .duration is float duration tyme

property elapsed

elapsed time property getter, Returns elapsed time in seconds (fractional) since ._start.

property remaining

remaining time property getter, Returns remaining time in seconds (fractional) before ._stop.

property expired

Returns True if timer has expired, False otherwise. time.time() >= ._stop,

start(duration=None, start=None)

Starts Timer of duration secs at start time start secs.
If duration not provided then uses current duration If start not provided then starts at current time.time()

restart(duration=None)
Lossless restart of Timer at start = ._stop for duration if provided, Otherwise current duration. No time lost.
Useful to extend Timer so no time lost

class hio.help.MonoTimer(duration=0.0, start=None, retro=True)
Bases: Timer

Class to manage real elaspsed time using time module but with monotonically increating time guarantee in spite
of system time being retrograded.

If the system clock is retrograded (moved back in time) while the timer is running then time.time() could move
to before the start time. MonoTimer detects this retrograde and if retro is True then retrogrades the start and stop
times back Otherwise it raises a TimerRetroError. MonoTimer is not able to detect a prograded clock (moved
forward in time)

._start is start time in seconds

._stop is stop time in seconds

._last is last measured time in seconds with retrograde handling

.retro is boolean If True retrograde ._start and ._stop when time is retrograded.

Properties:
.duration is float time duration in seconds of timer from ._start to ._stop .elaspsed is float time elasped in
seconds since ._start .remaining is float time remaining in seconds until ._stop .expired is boolean True if
expired, False otherwise, i.e. time >= ._stop .latest is float latest measured time in seconds with retrograte
handling

.start() = start timer at current time returns start time

.restart() = restart timer at last ._stop so no time lost, returns start time

property elapsed

elapsed time property getter, Returns elapsed time in seconds (fractional) since ._start.

property remaining

remaining time property getter, Returns remaining time in seconds (fractional) before ._stop.

3.1. hio 113

hio, Release 0.3.4

property expired

Returns True if timer has expired, False otherwise. .latest >= ._stop,

property latest

latest measured time property getter, Returns latest measured time in seconds adjusted for retrograded
system time.

exception hio.help.TimerError

Bases: hio.hioing.HioError

Generic Timer Errors Usage:

raise TimerError(“error message”)

exception hio.help.RetroTimerError

Bases: TimerError

Error due to real time being retrograded before start time of timer Usage:

raise RetroTimerError(“error message”)

3.1.2 Submodules

hio.__main__

hio package

Entrypoint module, in case you use python -m hio.

Why does this file exist, and why __main__? For more info, read:

• https://www.python.org/dev/peps/pep-0338/

• https://docs.python.org/3/using/cmdline.html#cmdoption-m

hio.cli

hio command line

Module that contains the command line app.

Why does this file exist, and why not put this in __main__?

You might be tempted to import things from __main__ later, but that will cause problems: the code will
get executed twice:

• When you run python -m keri python will execute __main__.py as a script. That means there won’t
be any hio.__main__ in sys.modules.

• When you import __main__ it will get executed again (as a module) because there’s no hio.
__main__ in sys.modules.

Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration

114 Chapter 3. API Reference

https://www.python.org/dev/peps/pep-0338/
https://docs.python.org/3/using/cmdline.html#cmdoption-m
http://click.pocoo.org/5/setuptools/#setuptools-integration

hio, Release 0.3.4

Module Contents

Functions

main([args])

Attributes

parser

hio.cli.parser

hio.cli.main(args=None)

hio.daemon

hio daemon

Background Server Daemon for keri

Module Contents

Functions

main([args])

Attributes

parser

hio.daemon.parser

hio.daemon.main(args=None)

3.1. hio 115

hio, Release 0.3.4

hio.hioing

hio.hioing module

Generic Constants and Classes Exception Classes

Module Contents

Classes

Mixin Base class to enable consistent MRO for mixin multiple
inheritance

Attributes

Versionage

Version

SEPARATOR

SEPARATOR_BYTES

hio.hioing.Versionage

hio.hioing.Version

hio.hioing.SEPARATOR = Multiline-String

1

hio.hioing.SEPARATOR_BYTES

exception hio.hioing.HioError

Bases: Exception

Base Class for hio exceptions

To use raise HioError(“Error: message”)

exception hio.hioing.ValidationError

Bases: HioError

Validation related errors Usage:

raise ValidationError(“error message”)

exception hio.hioing.VersionError

Bases: ValidationError

Bad or Unsupported Version

116 Chapter 3. API Reference

hio, Release 0.3.4

Usage:
raise VersionError(“error message”)

exception hio.hioing.OglerError

Bases: HioError

Error using or configuring Ogler

Usage:
raise OglerError(“error message”)

class hio.hioing.Mixin(*pa, **kwa)
Base class to enable consistent MRO for mixin multiple inheritance Allows each subclass to call su-
per(MixinSubClass, self).__init__(*pa, **kwa) So the __init__ propagates to common top of Tree https://
medium.com/geekculture/cooperative-multiple-inheritance-in-python-practice-60e3ac5f91cc

3.1.3 Package Contents

Classes

Mixin Base class to enable consistent MRO for mixin multiple
inheritance

Attributes

__version__

hio.__version__ = 0.6.9

class hio.Mixin(*pa, **kwa)
Base class to enable consistent MRO for mixin multiple inheritance Allows each subclass to call su-
per(MixinSubClass, self).__init__(*pa, **kwa) So the __init__ propagates to common top of Tree https://
medium.com/geekculture/cooperative-multiple-inheritance-in-python-practice-60e3ac5f91cc

exception hio.HioError

Bases: Exception

Base Class for hio exceptions

To use raise HioError(“Error: message”)

exception hio.ValidationError

Bases: HioError

Validation related errors Usage:

raise ValidationError(“error message”)

exception hio.VersionError

Bases: ValidationError

Bad or Unsupported Version

Usage:
raise VersionError(“error message”)

3.1. hio 117

https://medium.com/geekculture/cooperative-multiple-inheritance-in-python-practice-60e3ac5f91cc
https://medium.com/geekculture/cooperative-multiple-inheritance-in-python-practice-60e3ac5f91cc
https://medium.com/geekculture/cooperative-multiple-inheritance-in-python-practice-60e3ac5f91cc
https://medium.com/geekculture/cooperative-multiple-inheritance-in-python-practice-60e3ac5f91cc

hio, Release 0.3.4

118 Chapter 3. API Reference

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

119

hio, Release 0.3.4

120 Chapter 4. Indices and tables

PYTHON MODULE INDEX

h
hio, 5
hio.__main__, 114
hio.base, 5
hio.base.basing, 5
hio.base.doing, 5
hio.base.filing, 18
hio.base.tyming, 23
hio.cli, 114
hio.core, 40
hio.core.coring, 89
hio.core.http, 40
hio.core.http.clienting, 41
hio.core.http.httping, 44
hio.core.http.serving, 54
hio.core.serial, 63
hio.core.serial.serialing, 64
hio.core.tcp, 70
hio.core.tcp.clienting, 70
hio.core.tcp.serving, 73
hio.core.tcp.tcping, 80
hio.core.udp, 88
hio.core.udp.udping, 88
hio.core.wiring, 90
hio.daemon, 115
hio.demo, 96
hio.demo.web, 96
hio.demo.web.demo_web, 96
hio.demo.web.demoing, 97
hio.help, 97
hio.help.decking, 97
hio.help.helping, 99
hio.help.hicting, 102
hio.help.ogling, 104
hio.help.timing, 107
hio.hioing, 116

121

hio, Release 0.3.4

122 Python Module Index

INDEX

Symbols
_MAXHEADERS (in module hio.core.http.httping), 50
_MAXLINE (in module hio.core.http.httping), 50
__call__() (hio.base.Doer method), 33
__call__() (hio.base.doing.Doer method), 11
__call__() (hio.core.http.serving.StaticSink method),

59
__repr__() (hio.core.http.HTTPError method), 60
__repr__() (hio.core.http.httping.HTTPError method),

51
__repr__() (hio.help.Deck method), 110
__repr__() (hio.help.Hict method), 111
__repr__() (hio.help.Mict method), 112
__repr__() (hio.help.decking.Deck method), 98
__repr__() (hio.help.hicting.Hict method), 103
__repr__() (hio.help.hicting.Mict method), 103
__slots__ (hio.core.http.HTTPError attribute), 60
__slots__ (hio.core.http.httping.HTTPError attribute),

51
__subclasshook__() (hio.help.helping.NonStringIterable

class method), 101
__subclasshook__() (hio.help.helping.NonStringSequence

class method), 101
__version__ (in module hio), 117
_clearPath() (hio.base.Filer method), 39
_clearPath() (hio.base.filing.Filer method), 22

A
abort() (hio.base.Doer method), 34
abort() (hio.base.doing.Doer method), 12
abort() (hio.base.doing.ExDoer method), 17
abort() (hio.base.doing.TryDoer method), 18
aborted (hio.core.tcp.serving.RemoterTls attribute), 79
accept() (hio.core.tcp.Client method), 82
accept() (hio.core.tcp.clienting.Client method), 72
accept() (hio.core.tcp.serving.Acceptor method), 75
accepted (hio.core.tcp.Client property), 81
accepted (hio.core.tcp.clienting.Client property), 71
ACCEPTED (in module hio.core.http.httping), 48
Acceptor (class in hio.core.tcp.serving), 74
actualBufSizes() (hio.core.tcp.Client method), 81

actualBufSizes() (hio.core.tcp.clienting.Client
method), 71

actualBufSizes() (hio.core.tcp.serving.Acceptor
method), 75

actualBufSizes() (hio.core.udp.udping.Peer method),
88

AltCleanTailDirPath (hio.base.Filer attribute), 38
AltCleanTailDirPath (hio.base.filing.Filer attribute),

21
AltHeadDirPath (hio.base.Filer attribute), 38
AltHeadDirPath (hio.base.filing.Filer attribute), 21
AltHeadDirPath (hio.core.WireLog attribute), 94
AltHeadDirPath (hio.core.wiring.WireLog attribute),

91
AltHeadDirPath (hio.help.ogling.Ogler attribute), 107
AltTailDirPath (hio.base.Filer attribute), 38
AltTailDirPath (hio.base.filing.Filer attribute), 21
always (hio.base.DoDoer property), 35
always (hio.base.doing.DoDoer property), 14
arpCreate() (in module hio.core.coring), 89
arpDelete() (in module hio.core.coring), 90
attributize() (in module hio.help.helping), 99
attrify() (hio.core.http.Client static method), 60
attrify() (hio.core.http.clienting.Client static method),

43

B
backendRequest() (in module hio.core.http.clienting),

44
BAD_GATEWAY (in module hio.core.http.httping), 50
BAD_REQUEST (in module hio.core.http.httping), 49
BadMethod, 50
BadRequestLine, 50
BadStatusLine, 50
bareDo() (in module hio.base.doing), 16
BareServer (class in hio.core.http), 62
BareServer (class in hio.core.http.serving), 58
base (hio.base.Filer attribute), 37
base (hio.base.filing.Filer attribute), 20
Bom (hio.core.http.httping.EventSource attribute), 52
bs (hio.core.serial.Console attribute), 68
bs (hio.core.serial.serialing.Console attribute), 64

123

hio, Release 0.3.4

build() (hio.core.http.clienting.Requester method), 42
build() (hio.core.http.serving.CustomResponder

method), 58
build() (hio.core.http.serving.Responder method), 56
buildEnviron() (hio.core.http.Server method), 62
buildEnviron() (hio.core.http.serving.Server method),

57

C
checkPersisted() (hio.core.http.clienting.Respondent

method), 42
checkPersisted() (hio.core.http.httping.Parsent

method), 54
checkPersisted() (hio.core.http.serving.Requestant

method), 55
clean() (hio.base.Doer method), 33
clean() (hio.base.doing.Doer method), 12
CleanTailDirPath (hio.base.Filer attribute), 38
CleanTailDirPath (hio.base.filing.Filer attribute), 21
clearDirPath() (hio.core.WireLog method), 95
clearDirPath() (hio.core.wiring.WireLog method), 92
clearDirPath() (hio.help.ogling.Ogler method), 107
clearRxbs() (hio.core.serial.serialing.Driver method),

68
clearRxbs() (hio.core.tcp.Client method), 82
clearRxbs() (hio.core.tcp.clienting.Client method), 72
clearRxbs() (hio.core.tcp.Remoter method), 87
clearRxbs() (hio.core.tcp.serving.Remoter method), 78
Client (class in hio.core.http), 60
Client (class in hio.core.http.clienting), 43
Client (class in hio.core.tcp), 81
Client (class in hio.core.tcp.clienting), 70
ClientDoer (class in hio.core.http), 61
ClientDoer (class in hio.core.http.clienting), 44
ClientDoer (class in hio.core.tcp), 83
ClientDoer (class in hio.core.tcp.clienting), 73
ClientTls (class in hio.core.tcp), 83
ClientTls (class in hio.core.tcp.clienting), 72
close() (hio.base.Doer method), 34
close() (hio.base.doing.Doer method), 12
close() (hio.base.doing.ExDoer method), 17
close() (hio.base.doing.TryDoer method), 18
close() (hio.base.Filer method), 39
close() (hio.base.filing.Filer method), 22
close() (hio.core.http.BareServer method), 62
close() (hio.core.http.Client method), 60
close() (hio.core.http.clienting.Client method), 43
close() (hio.core.http.clienting.Respondent method), 42
close() (hio.core.http.httping.EventSource method), 52
close() (hio.core.http.httping.Parsent method), 54
close() (hio.core.http.Server method), 62
close() (hio.core.http.serving.BareServer method), 58
close() (hio.core.http.serving.Responder method), 56
close() (hio.core.http.serving.Server method), 57

close() (hio.core.serial.Console method), 69
close() (hio.core.serial.serialing.Console method), 65
close() (hio.core.serial.serialing.Device method), 67
close() (hio.core.serial.serialing.Serial method), 67
close() (hio.core.tcp.Client method), 82
close() (hio.core.tcp.clienting.Client method), 71
close() (hio.core.tcp.clienting.ClientTls method), 73
close() (hio.core.tcp.ClientTls method), 83
close() (hio.core.tcp.Remoter method), 86
close() (hio.core.tcp.Server method), 85
close() (hio.core.tcp.serving.Acceptor method), 75
close() (hio.core.tcp.serving.Remoter method), 78
close() (hio.core.tcp.serving.RemoterTls method), 79
close() (hio.core.tcp.serving.Server method), 76
close() (hio.core.udp.udping.Peer method), 89
close() (hio.core.WireLog method), 95
close() (hio.core.wiring.WireLog method), 92
close() (hio.help.ogling.Ogler method), 107
closeAllIx() (hio.core.tcp.Server method), 85
closeAllIx() (hio.core.tcp.serving.Server method), 76
closeConnection() (hio.core.http.BareServer

method), 62
closeConnection() (hio.core.http.Server method), 62
closeConnection() (hio.core.http.serving.BareServer

method), 58
closeConnection() (hio.core.http.serving.Server

method), 57
closeIx() (hio.core.tcp.Server method), 85
closeIx() (hio.core.tcp.serving.Server method), 76
CONFLICT (in module hio.core.http.httping), 49
connect() (hio.core.tcp.Client method), 82
connect() (hio.core.tcp.clienting.Client method), 72
connect() (hio.core.tcp.clienting.ClientTls method), 73
connect() (hio.core.tcp.ClientTls method), 83
connected (hio.core.tcp.Client property), 81
connected (hio.core.tcp.clienting.Client property), 71
connected (hio.core.tcp.clienting.ClientTls property),

72
connected (hio.core.tcp.ClientTls property), 83
connected (hio.core.tcp.serving.RemoterTls attribute),

79
Console (class in hio.core.serial), 68
Console (class in hio.core.serial.serialing), 64
consoled (hio.help.ogling.Ogler attribute), 106
ConsoleDoer (class in hio.core.serial.serialing), 66
CONTINUE (in module hio.core.http.httping), 48
copyfunc() (in module hio.help.helping), 99
count (hio.help.ogling.Ogler attribute), 106
CR (in module hio.core.http.clienting), 41
CR (in module hio.core.http.httping), 48
CR (in module hio.core.http.serving), 55
CREATED (in module hio.core.http.httping), 48
CRLF (in module hio.core.http.clienting), 41
CRLF (in module hio.core.http.httping), 48

124 Index

hio, Release 0.3.4

CRLF (in module hio.core.http.serving), 55
CustomResponder (class in hio.core.http.serving), 57

D
Deck (class in hio.help), 110
Deck (class in hio.help.decking), 97
Deed (in module hio.base.doing), 6
deeds (hio.base.DoDoer property), 35
deeds (hio.base.doing.DoDoer property), 14
deeds (hio.base.doing.Doist attribute), 7
deeds (hio.base.Doist attribute), 29
DefaultStaticSinkBasePath

(hio.core.http.serving.StaticSink attribute),
58

Delay (hio.core.http.serving.Responder attribute), 56
Device (class in hio.core.serial.serialing), 66
dictify() (hio.core.http.httping.Parsent method), 54
dirPath (hio.help.ogling.Ogler attribute), 106
do() (hio.base.DoDoer method), 35
do() (hio.base.Doer method), 33
do() (hio.base.doing.DoDoer method), 14
do() (hio.base.doing.Doer method), 11
do() (hio.base.doing.Doist method), 8
do() (hio.base.Doist method), 29
DoDoer (class in hio.base), 34
DoDoer (class in hio.base.doing), 13
Doer (class in hio.base), 32
Doer (class in hio.base.doing), 10
doers (hio.base.DoDoer property), 35
doers (hio.base.doing.DoDoer property), 14
doers (hio.base.doing.Doist attribute), 7
doers (hio.base.Doist attribute), 28
doify() (in module hio.base), 31
doify() (in module hio.base.doing), 9
doifyExDo() (in module hio.base.doing), 17
Doist (class in hio.base), 28
Doist (class in hio.base.doing), 6
doize() (in module hio.base), 31
doize() (in module hio.base.doing), 10
doizeExDo() (in module hio.base.doing), 17
done (hio.base.doing.Doist attribute), 7
done (hio.base.Doist attribute), 28
done (hio.base.FilerDoer attribute), 40
done (hio.base.filing.FilerDoer attribute), 22
Driver (class in hio.core.serial.serialing), 67
dump() (in module hio.help.helping), 102
Duration (hio.base.Tymer attribute), 28
duration (hio.base.Tymer property), 27
Duration (hio.base.tyming.Tymer attribute), 25
duration (hio.base.tyming.Tymer property), 25
duration (hio.help.Timer property), 113
duration (hio.help.timing.Timer property), 108

E
EchoConsoleDoer (class in hio.core.serial.serialing), 66
EchoServerDoer (class in hio.core.tcp), 87
EchoServerDoer (class in hio.core.tcp.serving), 80
elapsed (hio.base.Tymer property), 27
elapsed (hio.base.tyming.Tymer property), 25
elapsed (hio.help.MonoTimer property), 113
elapsed (hio.help.Timer property), 113
elapsed (hio.help.timing.MonoTimer property), 109
elapsed (hio.help.timing.Timer property), 108
enter() (hio.base.DoDoer method), 35
enter() (hio.base.Doer method), 33
enter() (hio.base.doing.DoDoer method), 15
enter() (hio.base.doing.Doer method), 11
enter() (hio.base.doing.Doist method), 8
enter() (hio.base.doing.ExDoer method), 17
enter() (hio.base.doing.TryDoer method), 18
enter() (hio.base.Doist method), 30
enter() (hio.base.FilerDoer method), 40
enter() (hio.base.filing.FilerDoer method), 22
enter() (hio.core.http.ClientDoer method), 61
enter() (hio.core.http.clienting.ClientDoer method), 44
enter() (hio.core.http.ServerDoer method), 63
enter() (hio.core.http.serving.ServerDoer method), 59
enter() (hio.core.serial.serialing.ConsoleDoer

method), 66
enter() (hio.core.serial.serialing.EchoConsoleDoer

method), 66
enter() (hio.core.tcp.ClientDoer method), 83
enter() (hio.core.tcp.clienting.ClientDoer method), 73
enter() (hio.core.tcp.EchoServerDoer method), 87
enter() (hio.core.tcp.ServerDoer method), 87
enter() (hio.core.tcp.serving.EchoServerDoer method),

80
enter() (hio.core.tcp.serving.ServerDoer method), 79
enter() (hio.core.WireLogDoer method), 96
enter() (hio.core.wiring.WireLogDoer method), 93
error (hio.core.http.HTTPError attribute), 60
error (hio.core.http.httping.HTTPError attribute), 51
EventSource (class in hio.core.http.httping), 52
ExDoer (class in hio.base.doing), 16
exit() (hio.base.DoDoer method), 36
exit() (hio.base.Doer method), 34
exit() (hio.base.doing.DoDoer method), 16
exit() (hio.base.doing.Doer method), 12
exit() (hio.base.doing.Doist method), 9
exit() (hio.base.doing.ExDoer method), 17
exit() (hio.base.doing.TryDoer method), 18
exit() (hio.base.Doist method), 30
exit() (hio.base.FilerDoer method), 40
exit() (hio.base.filing.FilerDoer method), 22
exit() (hio.core.http.ClientDoer method), 62
exit() (hio.core.http.clienting.ClientDoer method), 44
exit() (hio.core.http.ServerDoer method), 63

Index 125

hio, Release 0.3.4

exit() (hio.core.http.serving.ServerDoer method), 59
exit() (hio.core.serial.serialing.ConsoleDoer method),

66
exit() (hio.core.serial.serialing.EchoConsoleDoer

method), 66
exit() (hio.core.tcp.ClientDoer method), 84
exit() (hio.core.tcp.clienting.ClientDoer method), 73
exit() (hio.core.tcp.EchoServerDoer method), 87
exit() (hio.core.tcp.ServerDoer method), 87
exit() (hio.core.tcp.serving.EchoServerDoer method),

80
exit() (hio.core.tcp.serving.ServerDoer method), 80
exit() (hio.core.WireLogDoer method), 96
exit() (hio.core.wiring.WireLogDoer method), 93
EXPECTATION_FAILED (in module hio.core.http.httping),

49
expired (hio.base.Tymer property), 28
expired (hio.base.tyming.Tymer property), 25
expired (hio.help.MonoTimer property), 113
expired (hio.help.Timer property), 113
expired (hio.help.timing.MonoTimer property), 109
expired (hio.help.timing.Timer property), 108
extend() (hio.base.DoDoer method), 36
extend() (hio.base.doing.DoDoer method), 16
extend() (hio.base.doing.Doist method), 9
extend() (hio.base.Doist method), 31

F
FAILED_DEPENDENCY (in module hio.core.http.httping),

49
fd (hio.core.serial.Console attribute), 68
fd (hio.core.serial.serialing.Console attribute), 64
Fext (hio.base.Filer attribute), 38
fext (hio.base.Filer attribute), 38
Fext (hio.base.filing.Filer attribute), 21
fext (hio.base.filing.Filer attribute), 20
file (hio.base.Filer attribute), 38
file (hio.base.filing.Filer attribute), 20
filed (hio.base.Filer attribute), 37
filed (hio.base.filing.Filer attribute), 20
filed (hio.help.ogling.Ogler attribute), 106
Filer (class in hio.base), 37
Filer (class in hio.base.filing), 19
filer (hio.base.FilerDoer attribute), 40
filer (hio.base.filing.FilerDoer attribute), 22
FilerDoer (class in hio.base), 40
FilerDoer (class in hio.base.filing), 22
firsts() (hio.help.Hict method), 111
firsts() (hio.help.hicting.Hict method), 103
firsts() (hio.help.hicting.Mict method), 104
firsts() (hio.help.Mict method), 112
flush() (hio.core.WireLog method), 95
flush() (hio.core.wiring.WireLog method), 92
FORBIDDEN (in module hio.core.http.httping), 49

Format (hio.core.WireLog attribute), 94
Format (hio.core.wiring.WireLog attribute), 91
FOUND (in module hio.core.http.httping), 49

G
GATEWAY_TIMEOUT (in module hio.core.http.httping), 50
get() (hio.core.serial.Console method), 69
get() (hio.core.serial.serialing.Console method), 65, 66
getDefaultBroadcast() (in module hio.core.coring),

89
getDefaultHost() (in module hio.core.coring), 89
getLogger() (hio.help.ogling.Ogler method), 107
GONE (in module hio.core.http.httping), 49

H
handshake() (hio.core.tcp.clienting.ClientTls method),

73
handshake() (hio.core.tcp.ClientTls method), 83
handshake() (hio.core.tcp.serving.RemoterTls method),

79
HeadDirPath (hio.base.Filer attribute), 38
HeadDirPath (hio.base.filing.Filer attribute), 21
HeadDirPath (hio.core.WireLog attribute), 94
HeadDirPath (hio.core.wiring.WireLog attribute), 91
HeadDirPath (hio.help.ogling.Ogler attribute), 106
headDirPath (hio.help.ogling.Ogler attribute), 105
Hict (class in hio.help), 111
Hict (class in hio.help.hicting), 102
hio

module, 5
hio.__main__

module, 114
hio.base

module, 5
hio.base.basing

module, 5
hio.base.doing

module, 5
hio.base.filing

module, 18
hio.base.tyming

module, 23
hio.cli

module, 114
hio.core

module, 40
hio.core.coring

module, 89
hio.core.http

module, 40
hio.core.http.clienting

module, 41
hio.core.http.httping

module, 44

126 Index

hio, Release 0.3.4

hio.core.http.serving
module, 54

hio.core.serial
module, 63

hio.core.serial.serialing
module, 64

hio.core.tcp
module, 70

hio.core.tcp.clienting
module, 70

hio.core.tcp.serving
module, 73

hio.core.tcp.tcping
module, 80

hio.core.udp
module, 88

hio.core.udp.udping
module, 88

hio.core.wiring
module, 90

hio.daemon
module, 115

hio.demo
module, 96

hio.demo.web
module, 96

hio.demo.web.demo_web
module, 96

hio.demo.web.demoing
module, 97

hio.help
module, 97

hio.help.decking
module, 97

hio.help.helping
module, 99

hio.help.hicting
module, 102

hio.help.ogling
module, 104

hio.help.timing
module, 107

hio.hioing
module, 116

HioError, 116, 117
host (hio.core.tcp.Client property), 81
host (hio.core.tcp.clienting.Client property), 71
HTTP_11_VERSION_STRING (in module

hio.core.http.httping), 48
HTTP_PORT (in module hio.core.http.httping), 48
HTTP_VERSION_NOT_SUPPORTED (in module

hio.core.http.httping), 50
httpDate1123() (in module hio.core.http.httping), 51
HTTPError, 51, 59

HTTPException, 50
HTTPS_PORT (in module hio.core.http.httping), 48
HttpVersionString (hio.core.http.clienting.Requester

attribute), 42
HttpVersionString (hio.core.http.serving.CustomResponder

attribute), 58
HttpVersionString (hio.core.http.serving.Responder

attribute), 56

I
idle() (hio.core.http.BareServer method), 62
idle() (hio.core.http.Server method), 62
idle() (hio.core.http.serving.BareServer method), 58
idle() (hio.core.http.serving.Server method), 57
IM_USED (in module hio.core.http.httping), 48
initOgler() (in module hio.help.ogling), 104
initServerContext() (in module

hio.core.tcp.serving), 76
INSUFFICIENT_STORAGE (in module

hio.core.http.httping), 50
INTERNAL_SERVER_ERROR (in module

hio.core.http.httping), 49
interval (hio.help.ogling.Ogler attribute), 106
InvalidURL, 50
isIterator() (in module hio.help.helping), 101

J
just() (in module hio.help.helping), 101

L
lasts() (hio.help.Hict method), 111
lasts() (hio.help.hicting.Hict method), 103
lasts() (hio.help.hicting.Mict method), 104
lasts() (hio.help.Mict method), 112
latest (hio.help.MonoTimer property), 114
latest (hio.help.timing.MonoTimer property), 109
LENGTH_REQUIRED (in module hio.core.http.httping), 49
level (hio.help.ogling.Ogler attribute), 105
LF (in module hio.core.http.clienting), 41
LF (in module hio.core.http.httping), 48
LF (in module hio.core.http.serving), 55
limit (hio.base.doing.Doist attribute), 7
limit (hio.base.Doist attribute), 28
LineError, 64
LineTooLong, 50
load() (in module hio.help.helping), 102
LOCKED (in module hio.core.http.httping), 49
logger (in module hio.base.filing), 19
logger (in module hio.core.http.clienting), 41
logger (in module hio.core.http.serving), 55
logger (in module hio.core.serial.serialing), 64
logger (in module hio.core.tcp.clienting), 70
logger (in module hio.core.tcp.serving), 74
logger (in module hio.core.udp.udping), 88

Index 127

hio, Release 0.3.4

logger (in module hio.demo.web.demo_web), 97
logger (in module hio.demo.web.demoing), 97

M
main() (in module hio.cli), 115
main() (in module hio.daemon), 115
makeParser() (hio.core.http.httping.EventSource

method), 53
makeParser() (hio.core.http.httping.Parsent method),

54
MAX_HEADERS (in module hio.core.http.httping), 48
MAX_LINE_SIZE (in module hio.core.http.httping), 48
MAXAMOUNT (in module hio.core.http.httping), 50
MaxBufSize (hio.core.serial.Console attribute), 69
MaxBufSize (hio.core.serial.serialing.Console at-

tribute), 65
METHOD_NOT_ALLOWED (in module hio.core.http.httping),

49
METHODS (in module hio.core.http.httping), 50
Mict (class in hio.help), 111
Mict (class in hio.help.hicting), 103
Mixin (class in hio), 117
Mixin (class in hio.hioing), 117
Mode (hio.base.Filer attribute), 38
mode (hio.base.Filer attribute), 38
Mode (hio.base.filing.Filer attribute), 21
mode (hio.base.filing.Filer attribute), 20
module

hio, 5
hio.__main__, 114
hio.base, 5
hio.base.basing, 5
hio.base.doing, 5
hio.base.filing, 18
hio.base.tyming, 23
hio.cli, 114
hio.core, 40
hio.core.coring, 89
hio.core.http, 40
hio.core.http.clienting, 41
hio.core.http.httping, 44
hio.core.http.serving, 54
hio.core.serial, 63
hio.core.serial.serialing, 64
hio.core.tcp, 70
hio.core.tcp.clienting, 70
hio.core.tcp.serving, 73
hio.core.tcp.tcping, 80
hio.core.udp, 88
hio.core.udp.udping, 88
hio.core.wiring, 90
hio.daemon, 115
hio.demo, 96
hio.demo.web, 96

hio.demo.web.demo_web, 96
hio.demo.web.demoing, 97
hio.help, 97
hio.help.decking, 97
hio.help.helping, 99
hio.help.hicting, 102
hio.help.ogling, 104
hio.help.timing, 107
hio.hioing, 116

MonoTimer (class in hio.help), 113
MonoTimer (class in hio.help.timing), 108
MOVED_PERMANENTLY (in module hio.core.http.httping),

48
MULTI_STATUS (in module hio.core.http.httping), 48
MULTIPLE_CHOICES (in module hio.core.http.httping), 48

N
nab() (hio.help.Hict method), 111
nab() (hio.help.hicting.Hict method), 103
nab() (hio.help.hicting.Mict method), 103
nab() (hio.help.Mict method), 112
naball() (hio.help.Hict method), 111
naball() (hio.help.hicting.Hict method), 103
naball() (hio.help.hicting.Mict method), 104
naball() (hio.help.Mict method), 112
nabone() (hio.help.Hict method), 111
nabone() (hio.help.hicting.Hict method), 103
nabone() (hio.help.hicting.Mict method), 103
nabone() (hio.help.Mict method), 112
name (hio.base.Filer attribute), 37
name (hio.base.filing.Filer attribute), 19
name (hio.help.ogling.Ogler attribute), 105
NETWORK_AUTHENTICATION_REQUIRED (in module

hio.core.http.httping), 50
NO_CONTENT (in module hio.core.http.httping), 48
NON_AUTHORITATIVE_INFORMATION (in module

hio.core.http.httping), 48
NonStringIterable (class in hio.help.helping), 101
nonStringIterable() (in module hio.help.helping),

101
NonStringSequence (class in hio.help.helping), 101
nonStringSequence() (in module hio.help.helping),

101
normalizeHost() (in module hio.core.coring), 89
normalizeHostPort() (in module

hio.core.http.httping), 51
NOT_ACCEPTABLE (in module hio.core.http.httping), 49
NOT_EXTENDED (in module hio.core.http.httping), 50
NOT_FOUND (in module hio.core.http.httping), 49
NOT_IMPLEMENTED (in module hio.core.http.httping), 50
NOT_MODIFIED (in module hio.core.http.httping), 49

O
ocfn() (in module hio.help.helping), 101

128 Index

hio, Release 0.3.4

Ogler (class in hio.help.ogling), 105
ogler (in module hio.help), 110
OglerError, 117
OK (in module hio.core.http.httping), 48
open() (hio.core.serial.Console method), 69
open() (hio.core.serial.serialing.Console method), 65
open() (hio.core.tcp.Client method), 82
open() (hio.core.tcp.clienting.Client method), 71
open() (hio.core.tcp.serving.Acceptor method), 75
open() (hio.core.udp.udping.Peer method), 88
openClient() (in module hio.core.http), 61
openClient() (in module hio.core.http.clienting), 42
openClient() (in module hio.core.tcp), 81
openClient() (in module hio.core.tcp.clienting), 70
opened (hio.core.serial.Console attribute), 68
opened (hio.core.serial.serialing.Console attribute), 65
opened (hio.help.ogling.Ogler attribute), 106
openFiler() (in module hio.base), 37
openFiler() (in module hio.base.filing), 19
openOgler() (in module hio.help.ogling), 105
openServer() (in module hio.core.http), 63
openServer() (in module hio.core.http.serving), 56
openServer() (in module hio.core.tcp), 84
openServer() (in module hio.core.tcp.serving), 74
openWL() (in module hio.core), 93
openWL() (in module hio.core.wiring), 90

P
packChunk() (in module hio.core.http.httping), 52
packHeader() (in module hio.core.http.httping), 52
parse() (hio.core.http.httping.EventSource method), 53
parse() (hio.core.http.httping.Parsent method), 54
parseBody() (hio.core.http.clienting.Respondent

method), 42
parseBody() (hio.core.http.httping.Parsent method), 54
parseBody() (hio.core.http.serving.Requestant method),

55
parseBom() (in module hio.core.http.httping), 52
parseChunk() (in module hio.core.http.httping), 52
parseEvents() (hio.core.http.httping.EventSource

method), 53
parseEventStream() (hio.core.http.httping.EventSource

method), 53
parseHead() (hio.core.http.clienting.Respondent

method), 42
parseHead() (hio.core.http.httping.Parsent method), 54
parseHead() (hio.core.http.serving.Requestant method),

55
parseLeader() (in module hio.core.http.httping), 52
parseLine() (in module hio.core.http.httping), 52
parseMessage() (hio.core.http.httping.Parsent

method), 54
Parsent (class in hio.core.http.httping), 54
parseQuery() (in module hio.core.http.httping), 51

parser (in module hio.cli), 115
parser (in module hio.daemon), 115
parseRequestLine() (in module hio.core.http.httping),

52
parseStatusLine() (in module hio.core.http.httping),

52
PARTIAL_CONTENT (in module hio.core.http.httping), 48
path (hio.help.ogling.Ogler attribute), 106
PAYMENT_REQUIRED (in module hio.core.http.httping), 49
Peer (class in hio.core.tcp.tcping), 80
Peer (class in hio.core.udp.udping), 88
Perm (hio.base.Filer attribute), 38
Perm (hio.base.filing.Filer attribute), 21
Port (hio.core.http.clienting.Requester attribute), 42
port (hio.core.tcp.Client property), 81
port (hio.core.tcp.clienting.Client property), 71
pour() (hio.core.http.serving.Steward method), 58
PRECONDITION_FAILED (in module

hio.core.http.httping), 49
PRECONDITION_REQUIRED (in module

hio.core.http.httping), 49
Prefix (hio.core.WireLog attribute), 94
Prefix (hio.core.wiring.WireLog attribute), 91
Prefix (hio.help.ogling.Ogler attribute), 106
prefix (hio.help.ogling.Ogler attribute), 105
PrematureClosure, 51
PROCESSING (in module hio.core.http.httping), 48
PROXY_AUTHENTICATION_REQUIRED (in module

hio.core.http.httping), 49
pull() (hio.help.Deck method), 110
pull() (hio.help.decking.Deck method), 98
push() (hio.help.Deck method), 110
push() (hio.help.decking.Deck method), 98
put() (hio.core.serial.Console method), 69
put() (hio.core.serial.serialing.Console method), 65

R
readRx() (hio.core.WireLog method), 95
readRx() (hio.core.wiring.WireLog method), 92
readTx() (hio.core.WireLog method), 95
readTx() (hio.core.wiring.WireLog method), 92
real (hio.base.doing.Doist attribute), 7
real (hio.base.Doist attribute), 28
rebuild() (hio.core.http.clienting.Requester method),

42
receive() (hio.core.serial.serialing.Device method), 67
receive() (hio.core.serial.serialing.Serial method), 67
receive() (hio.core.tcp.Client method), 82
receive() (hio.core.tcp.clienting.Client method), 72
receive() (hio.core.tcp.clienting.ClientTls method), 73
receive() (hio.core.tcp.ClientTls method), 83
receive() (hio.core.tcp.Remoter method), 86
receive() (hio.core.tcp.serving.Remoter method), 78
receive() (hio.core.tcp.serving.RemoterTls method), 79

Index 129

hio, Release 0.3.4

receive() (hio.core.udp.udping.Peer method), 89
Reconnectable (hio.core.tcp.Client attribute), 81
Reconnectable (hio.core.tcp.clienting.Client attribute),

71
recur() (hio.base.DoDoer method), 36
recur() (hio.base.Doer method), 33
recur() (hio.base.doing.DoDoer method), 15
recur() (hio.base.doing.Doer method), 11
recur() (hio.base.doing.Doist method), 9
recur() (hio.base.doing.ExDoer method), 17
recur() (hio.base.doing.ReDoer method), 13
recur() (hio.base.doing.TryDoer method), 18
recur() (hio.base.Doist method), 30
recur() (hio.core.http.ClientDoer method), 61
recur() (hio.core.http.clienting.ClientDoer method), 44
recur() (hio.core.http.ServerDoer method), 63
recur() (hio.core.http.serving.ServerDoer method), 59
recur() (hio.core.serial.serialing.EchoConsoleDoer

method), 66
recur() (hio.core.tcp.ClientDoer method), 83
recur() (hio.core.tcp.clienting.ClientDoer method), 73
recur() (hio.core.tcp.EchoServerDoer method), 87
recur() (hio.core.tcp.ServerDoer method), 87
recur() (hio.core.tcp.serving.EchoServerDoer method),

80
recur() (hio.core.tcp.serving.ServerDoer method), 79
redirect() (hio.core.http.Client method), 61
redirect() (hio.core.http.clienting.Client method), 43
ReDoer (class in hio.base.doing), 12
refresh() (hio.core.http.serving.Steward method), 58
refresh() (hio.core.tcp.Client method), 82
refresh() (hio.core.tcp.clienting.Client method), 72
refresh() (hio.core.tcp.Remoter method), 86
refresh() (hio.core.tcp.serving.Remoter method), 78
reinit() (hio.core.http.clienting.Requester method), 42
reinit() (hio.core.http.clienting.Respondent method),

42
reinit() (hio.core.http.httping.Parsent method), 54
reinit() (hio.core.http.serving.CustomResponder

method), 58
reinitHostPort() (hio.core.tcp.Client method), 81
reinitHostPort() (hio.core.tcp.clienting.Client

method), 71
remaining (hio.base.Tymer property), 28
remaining (hio.base.tyming.Tymer property), 25
remaining (hio.help.MonoTimer property), 113
remaining (hio.help.Timer property), 113
remaining (hio.help.timing.MonoTimer property), 109
remaining (hio.help.timing.Timer property), 108
remake() (hio.base.Filer method), 39
remake() (hio.base.filing.Filer method), 21
Remoter (class in hio.core.tcp), 86
Remoter (class in hio.core.tcp.serving), 78
RemoterTls (class in hio.core.tcp.serving), 79

remove() (hio.base.DoDoer method), 37
remove() (hio.base.doing.DoDoer method), 16
remove() (hio.base.doing.Doist method), 9
remove() (hio.base.Doist method), 31
removeIx() (hio.core.tcp.Server method), 85
removeIx() (hio.core.tcp.serving.Server method), 76
render() (hio.core.http.HTTPError method), 60
render() (hio.core.http.httping.HTTPError method), 51
reopen() (hio.base.Filer method), 38
reopen() (hio.base.filing.Filer method), 21
reopen() (hio.core.http.BareServer method), 62
reopen() (hio.core.http.Client method), 60
reopen() (hio.core.http.clienting.Client method), 43
reopen() (hio.core.http.Server method), 62
reopen() (hio.core.http.serving.BareServer method), 58
reopen() (hio.core.http.serving.Server method), 57
reopen() (hio.core.serial.Console method), 69
reopen() (hio.core.serial.serialing.Console method), 65
reopen() (hio.core.serial.serialing.Device method), 66
reopen() (hio.core.serial.serialing.Serial method), 67
reopen() (hio.core.tcp.Client method), 82
reopen() (hio.core.tcp.clienting.Client method), 71
reopen() (hio.core.tcp.serving.Acceptor method), 75
reopen() (hio.core.udp.udping.Peer method), 88
reopen() (hio.core.WireLog method), 94
reopen() (hio.core.wiring.WireLog method), 91
reopen() (hio.help.ogling.Ogler method), 107
repack() (in module hio.help.helping), 100
request() (hio.core.http.Client method), 60
request() (hio.core.http.clienting.Client method), 43
REQUEST_ENTITY_TOO_LARGE (in module

hio.core.http.httping), 49
REQUEST_HEADER_FIELDS_TOO_LARGE (in module

hio.core.http.httping), 49
REQUEST_TIMEOUT (in module hio.core.http.httping), 49
REQUEST_URI_TOO_LONG (in module

hio.core.http.httping), 49
Requestant (class in hio.core.http.serving), 55
REQUESTED_RANGE_NOT_SATISFIABLE (in module

hio.core.http.httping), 49
Requester (class in hio.core.http.clienting), 41
reset() (hio.core.http.serving.Responder method), 56
RESET_CONTENT (in module hio.core.http.httping), 48
resetLevel() (hio.help.ogling.Ogler method), 107
respond() (hio.core.http.Client method), 60
respond() (hio.core.http.clienting.Client method), 43
respond() (hio.core.http.serving.Steward method), 58
Respondent (class in hio.core.http.clienting), 42
Responder (class in hio.core.http.serving), 56
Response (in module hio.core.http.clienting), 41
restart() (hio.base.Tymer method), 28
restart() (hio.base.tyming.Tymer method), 25
restart() (hio.help.Timer method), 113
restart() (hio.help.timing.Timer method), 108

130 Index

hio, Release 0.3.4

RetroTimerError, 108, 114
Retry (hio.core.http.clienting.Respondent attribute), 42
run() (in module hio.demo.web.demo_web), 97
rxbs (hio.core.serial.Console attribute), 68
rxbs (hio.core.serial.serialing.Console attribute), 65

S
scan() (hio.core.serial.serialing.Driver method), 68
SEE_OTHER (in module hio.core.http.httping), 49
send() (hio.core.serial.serialing.Device method), 67
send() (hio.core.serial.serialing.Driver method), 68
send() (hio.core.serial.serialing.Serial method), 67
send() (hio.core.tcp.Client method), 82
send() (hio.core.tcp.clienting.Client method), 72
send() (hio.core.tcp.clienting.ClientTls method), 73
send() (hio.core.tcp.ClientTls method), 83
send() (hio.core.tcp.Remoter method), 87
send() (hio.core.tcp.serving.Remoter method), 78
send() (hio.core.tcp.serving.RemoterTls method), 79
send() (hio.core.udp.udping.Peer method), 89
SEPARATOR (in module hio.hioing), 116
SEPARATOR_BYTES (in module hio.hioing), 116
Serial (class in hio.core.serial.serialing), 67
Server (class in hio.core.http), 62
Server (class in hio.core.http.serving), 57
Server (class in hio.core.tcp), 84
Server (class in hio.core.tcp.serving), 75
ServerDoer (class in hio.core.http), 63
ServerDoer (class in hio.core.http.serving), 59
ServerDoer (class in hio.core.tcp), 87
ServerDoer (class in hio.core.tcp.serving), 79
ServerTls (class in hio.core.tcp), 85
ServerTls (class in hio.core.tcp.serving), 77
service() (hio.core.http.BareServer method), 62
service() (hio.core.http.Client method), 61
service() (hio.core.http.clienting.Client method), 44
service() (hio.core.http.Server method), 63
service() (hio.core.http.serving.BareServer method),

58
service() (hio.core.http.serving.Responder method), 56
service() (hio.core.http.serving.Server method), 57
service() (hio.core.serial.serialing.Driver method), 68
service() (hio.core.tcp.Client method), 83
service() (hio.core.tcp.clienting.Client method), 72
service() (hio.core.tcp.Server method), 85
service() (hio.core.tcp.serving.Server method), 76
SERVICE_UNAVAILABLE (in module

hio.core.http.httping), 50
serviceAccepts() (hio.core.tcp.serving.Acceptor

method), 75
serviceAxes() (hio.core.tcp.Server method), 84
serviceAxes() (hio.core.tcp.ServerTls method), 86
serviceAxes() (hio.core.tcp.serving.Server method),

76

serviceAxes() (hio.core.tcp.serving.ServerTls
method), 77

serviceConnect() (hio.core.tcp.Client method), 82
serviceConnect() (hio.core.tcp.clienting.Client

method), 72
serviceConnects() (hio.core.http.BareServer

method), 62
serviceConnects() (hio.core.http.Server method), 62
serviceConnects() (hio.core.http.serving.BareServer

method), 58
serviceConnects() (hio.core.http.serving.Server

method), 57
serviceConnects() (hio.core.tcp.Server method), 84
serviceConnects() (hio.core.tcp.ServerTls method),

86
serviceConnects() (hio.core.tcp.serving.Server

method), 76
serviceConnects() (hio.core.tcp.serving.ServerTls

method), 78
serviceCxes() (hio.core.tcp.ServerTls method), 86
serviceCxes() (hio.core.tcp.serving.ServerTls

method), 77
serviceReceiveOnce() (hio.core.tcp.Client method),

82
serviceReceiveOnce() (hio.core.tcp.clienting.Client

method), 72
serviceReceiveOnce() (hio.core.tcp.Remoter

method), 86
serviceReceiveOnce() (hio.core.tcp.serving.Remoter

method), 78
serviceReceives() (hio.core.serial.serialing.Driver

method), 68
serviceReceives() (hio.core.tcp.Client method), 82
serviceReceives() (hio.core.tcp.clienting.Client

method), 72
serviceReceives() (hio.core.tcp.Remoter method), 86
serviceReceives() (hio.core.tcp.serving.Remoter

method), 78
serviceReceivesAllIx() (hio.core.tcp.Server

method), 85
serviceReceivesAllIx() (hio.core.tcp.serving.Server

method), 76
serviceReceivesIx() (hio.core.tcp.Server method),

85
serviceReceivesIx() (hio.core.tcp.serving.Server

method), 76
serviceReps() (hio.core.http.Server method), 63
serviceReps() (hio.core.http.serving.Server method),

57
serviceReqs() (hio.core.http.Server method), 63
serviceReqs() (hio.core.http.serving.Server method),

57
serviceRequests() (hio.core.http.Client method), 61
serviceRequests() (hio.core.http.clienting.Client

Index 131

hio, Release 0.3.4

method), 43
serviceResponse() (hio.core.http.Client method), 61
serviceResponse() (hio.core.http.clienting.Client

method), 43
serviceSends() (hio.core.serial.serialing.Driver

method), 68
serviceSends() (hio.core.tcp.Client method), 82
serviceSends() (hio.core.tcp.clienting.Client method),

72
serviceSends() (hio.core.tcp.Remoter method), 87
serviceSends() (hio.core.tcp.serving.Remoter

method), 78
serviceSendsAllIx() (hio.core.tcp.Server method),

85
serviceSendsAllIx() (hio.core.tcp.serving.Server

method), 76
serviceStewards() (hio.core.http.BareServer

method), 62
serviceStewards() (hio.core.http.serving.BareServer

method), 58
serviceWhileGen() (hio.core.http.Client method), 61
serviceWhileGen() (hio.core.http.clienting.Client

method), 44
shutdown() (hio.core.tcp.Client method), 82
shutdown() (hio.core.tcp.clienting.Client method), 71
shutdown() (hio.core.tcp.Remoter method), 86
shutdown() (hio.core.tcp.serving.Remoter method), 78
shutdownIx() (hio.core.tcp.Server method), 84
shutdownIx() (hio.core.tcp.serving.Server method), 76
shutdownReceive() (hio.core.tcp.Client method), 82
shutdownReceive() (hio.core.tcp.clienting.Client

method), 71
shutdownReceive() (hio.core.tcp.Remoter method), 86
shutdownReceive() (hio.core.tcp.serving.Remoter

method), 78
shutdownReceiveIx() (hio.core.tcp.Server method),

85
shutdownReceiveIx() (hio.core.tcp.serving.Server

method), 76
shutdownSend() (hio.core.tcp.Client method), 82
shutdownSend() (hio.core.tcp.clienting.Client method),

71
shutdownSend() (hio.core.tcp.Remoter method), 86
shutdownSend() (hio.core.tcp.serving.Remoter

method), 78
shutdownSendIx() (hio.core.tcp.Server method), 85
shutdownSendIx() (hio.core.tcp.serving.Server

method), 76
start() (hio.base.Tymer method), 28
start() (hio.base.tyming.Tymer method), 25
start() (hio.core.http.serving.Responder method), 56
start() (hio.help.Timer method), 113
start() (hio.help.timing.Timer method), 108
State (in module hio.base.basing), 5

StaticSink (class in hio.core.http.serving), 58
StaticSinkBasePath (hio.core.http.serving.StaticSink

attribute), 58
STATUS_DESCRIPTIONS (in module

hio.core.http.httping), 50
Steward (class in hio.core.http.serving), 58
SWITCHING_PROTOCOLS (in module

hio.core.http.httping), 48
syslogged (hio.help.ogling.Ogler attribute), 106

T
TailDirPath (hio.base.Filer attribute), 38
TailDirPath (hio.base.filing.Filer attribute), 21
TailDirPath (hio.core.WireLog attribute), 94
TailDirPath (hio.core.wiring.WireLog attribute), 91
TailDirPath (hio.help.ogling.Ogler attribute), 107
temp (hio.base.Filer attribute), 37
temp (hio.base.filing.Filer attribute), 20
temp (hio.help.ogling.Ogler attribute), 105
TempHeadDir (hio.base.Filer attribute), 38
TempHeadDir (hio.base.filing.Filer attribute), 21
TempHeadDir (hio.core.WireLog attribute), 94
TempHeadDir (hio.core.wiring.WireLog attribute), 91
TempHeadDir (hio.help.ogling.Ogler attribute), 107
TEMPORARY_REDIRECT (in module hio.core.http.httping),

49
TempPrefix (hio.base.Filer attribute), 38
TempPrefix (hio.base.filing.Filer attribute), 21
TempPrefix (hio.core.WireLog attribute), 94
TempPrefix (hio.core.wiring.WireLog attribute), 91
TempPrefix (hio.help.ogling.Ogler attribute), 107
TempSuffix (hio.base.Filer attribute), 38
TempSuffix (hio.base.filing.Filer attribute), 21
TempSuffix (hio.core.WireLog attribute), 94
TempSuffix (hio.core.wiring.WireLog attribute), 91
TempSuffix (hio.help.ogling.Ogler attribute), 107
tick() (hio.base.tyming.Tymist method), 23
tick() (hio.base.Tymist method), 26
Timeout (hio.core.http.BareServer attribute), 62
Timeout (hio.core.http.serving.BareServer attribute), 58
Timer (class in hio.help), 112
Timer (class in hio.help.timing), 108
timer (hio.base.doing.Doist attribute), 7
timer (hio.base.Doist attribute), 29
TimerError, 108, 114
tock (hio.base.Doer property), 33
tock (hio.base.doing.Doer property), 11
Tock (hio.base.tyming.Tymist attribute), 23
tock (hio.base.tyming.Tymist property), 23
Tock (hio.base.Tymist attribute), 26
tock (hio.base.Tymist property), 26
TOO_MANY_REQUESTS (in module hio.core.http.httping),

49
transmit() (hio.core.http.Client method), 60

132 Index

hio, Release 0.3.4

transmit() (hio.core.http.clienting.Client method), 43
transmitIx() (hio.core.tcp.Server method), 85
transmitIx() (hio.core.tcp.serving.Server method), 76
tryDo() (in module hio.base.doing), 18
TryDoer (class in hio.base.doing), 17
tx() (hio.core.serial.serialing.Driver method), 68
tx() (hio.core.tcp.Client method), 82
tx() (hio.core.tcp.clienting.Client method), 72
tx() (hio.core.tcp.Remoter method), 87
tx() (hio.core.tcp.serving.Remoter method), 78
tyme (hio.base.Tymee property), 27
tyme (hio.base.tyming.Tymee property), 24
tyme (hio.base.tyming.Tymist property), 23
tyme (hio.base.Tymist property), 26
Tymee (class in hio.base), 26
Tymee (class in hio.base.tyming), 23
tymen() (hio.base.tyming.Tymist method), 23
tymen() (hio.base.Tymist method), 26
Tymeout (hio.core.http.Server attribute), 62
Tymeout (hio.core.http.serving.Server attribute), 57
Tymeout (hio.core.tcp.Client attribute), 81
Tymeout (hio.core.tcp.clienting.Client attribute), 71
Tymeout (hio.core.tcp.Remoter attribute), 86
Tymeout (hio.core.tcp.Server attribute), 84
Tymeout (hio.core.tcp.serving.Remoter attribute), 78
Tymeout (hio.core.tcp.serving.Server attribute), 76
Tymer (class in hio.base), 27
Tymer (class in hio.base.tyming), 24
Tymist (class in hio.base), 26
Tymist (class in hio.base.tyming), 23
tymth (hio.base.Tymee property), 27
tymth (hio.base.tyming.Tymee property), 24

U
UDP_MAX_DATAGRAM_SIZE (in module

hio.core.udp.udping), 88
UDP_MAX_PACKET_SIZE (in module

hio.core.udp.udping), 88
UDP_MAX_SAFE_PAYLOAD (in module

hio.core.udp.udping), 88
UNAUTHORIZED (in module hio.core.http.httping), 49
UnknownProtocol, 50
UNPROCESSABLE_ENTITY (in module

hio.core.http.httping), 49
unquoteQuery() (in module hio.core.http.httping), 51
UNSUPPORTED_MEDIA_TYPE (in module

hio.core.http.httping), 49
updateQargsQuery() (in module hio.core.http.httping),

51
UPGRADE_REQUIRED (in module hio.core.http.httping), 49
USE_PROXY (in module hio.core.http.httping), 49

V
ValidationError, 116, 117

Version (in module hio.hioing), 116
Versionage (in module hio.hioing), 116
VersionError, 116, 117

W
when (hio.help.ogling.Ogler attribute), 106
wind() (hio.base.Tymee method), 27
wind() (hio.base.Tymer method), 28
wind() (hio.base.tyming.Tymee method), 24
wind() (hio.base.tyming.Tymer method), 25
wind() (hio.core.http.Client method), 60
wind() (hio.core.http.ClientDoer method), 61
wind() (hio.core.http.clienting.Client method), 43
wind() (hio.core.http.clienting.ClientDoer method), 44
wind() (hio.core.http.Server method), 62
wind() (hio.core.http.ServerDoer method), 63
wind() (hio.core.http.serving.Server method), 57
wind() (hio.core.http.serving.ServerDoer method), 59
wind() (hio.core.tcp.Client method), 81
wind() (hio.core.tcp.ClientDoer method), 83
wind() (hio.core.tcp.clienting.Client method), 71
wind() (hio.core.tcp.clienting.ClientDoer method), 73
wind() (hio.core.tcp.Remoter method), 86
wind() (hio.core.tcp.Server method), 84
wind() (hio.core.tcp.ServerDoer method), 87
wind() (hio.core.tcp.serving.Remoter method), 78
wind() (hio.core.tcp.serving.Server method), 76
wind() (hio.core.tcp.serving.ServerDoer method), 79
WireLog (class in hio.core), 94
WireLog (class in hio.core.wiring), 90
WireLogDoer (class in hio.core), 95
WireLogDoer (class in hio.core.wiring), 92
wrap() (hio.core.tcp.clienting.ClientTls method), 73
wrap() (hio.core.tcp.ClientTls method), 83
wrap() (hio.core.tcp.serving.RemoterTls method), 79
write() (hio.core.http.serving.Responder method), 56
writeRx() (hio.core.WireLog method), 95
writeRx() (hio.core.wiring.WireLog method), 92
writeTx() (hio.core.WireLog method), 95
writeTx() (hio.core.wiring.WireLog method), 92
WsgiServer (in module hio.core.http), 63
WsgiServer (in module hio.core.http.serving), 57

Index 133

	Introduction to HIO
	Structured Concurrency with Asynchronous IO
	Current Status

	src
	hio package
	Subpackages
	hio.base package
	Submodules
	hio.base.basing module
	hio.base.doing module
	hio.base.tyming module
	Module contents

	hio.core package
	Subpackages
	hio.core.serial package
	Submodules
	hio.core.serial.serialing module
	Module contents
	hio.core.tcp package
	Submodules
	hio.core.tcp.clienting module
	hio.core.tcp.serving module
	hio.core.tcp.tcping module
	Module contents
	hio.core.udp package
	Submodules
	hio.core.udp.udping module
	Module contents

	Submodules
	hio.core.coring module
	hio.core.wiring module
	Module contents

	hio.demo package
	Module contents

	hio.help package
	Submodules
	hio.help.helping module
	hio.help.ogling module
	hio.help.timing module
	Module contents

	Submodules
	hio.cli module
	hio.daemon module
	hio.hioing module
	Module contents

	API Reference
	hio
	Subpackages
	hio.base
	Submodules
	hio.base.basing
	Module Contents
	hio.base.doing
	Module Contents
	Classes
	Functions
	Attributes
	hio.base.filing
	Module Contents
	Classes
	Functions
	Attributes
	hio.base.tyming
	Module Contents
	Classes

	Package Contents
	Classes
	Functions

	hio.core
	Subpackages
	hio.core.http
	Submodules
	hio.core.http.clienting
	Module Contents
	Classes
	Functions
	Attributes
	hio.core.http.httping
	Module Contents
	Classes
	Functions
	Attributes
	hio.core.http.serving
	Module Contents
	Classes
	Functions
	Attributes
	Package Contents
	Classes
	Functions
	Attributes
	hio.core.serial
	Submodules
	hio.core.serial.serialing
	Module Contents
	Classes
	Attributes
	Package Contents
	Classes
	hio.core.tcp
	Submodules
	hio.core.tcp.clienting
	Module Contents
	Classes
	Functions
	Attributes
	hio.core.tcp.serving
	Module Contents
	Classes
	Functions
	Attributes
	hio.core.tcp.tcping
	Module Contents
	Classes
	Package Contents
	Classes
	Functions
	hio.core.udp
	Submodules
	hio.core.udp.udping
	Module Contents
	Classes
	Attributes

	Submodules
	hio.core.coring
	Module Contents
	Functions
	hio.core.wiring
	Module Contents
	Classes
	Functions

	Package Contents
	Classes
	Functions

	hio.demo
	Subpackages
	hio.demo.web
	Submodules
	hio.demo.web.demo_web
	Module Contents
	Functions
	Attributes
	hio.demo.web.demoing
	Module Contents

	hio.help
	Submodules
	hio.help.decking
	Module Contents
	Classes
	hio.help.helping
	Module Contents
	Classes
	Functions
	hio.help.hicting
	Module Contents
	Classes
	hio.help.ogling
	Module Contents
	Classes
	Functions
	hio.help.timing
	Module Contents
	Classes

	Package Contents
	Classes
	Attributes

	Submodules
	hio.__main__
	hio.cli
	Module Contents
	Functions
	Attributes

	hio.daemon
	Module Contents
	Functions
	Attributes

	hio.hioing
	Module Contents
	Classes
	Attributes

	Package Contents
	Classes
	Attributes

	Indices and tables
	Python Module Index
	Index

